Agilebot Robot SDK

Agilebot Robot SDK
Agilebot Robot SDK Manual

A

Python SDK

High-performance robot control
development kit based on Python,
featuring elegant and concise API design
to help you rapidly build intelligent

robotics applications.

Learn More -

@

C# SDK

Enterprise-grade robot control solution
for the .NET ecosystem, providing type-
safe strongly-typed APIs for seamless
integration into industrial automation

systems.

Learn More ->

Copyright © 2026-present Agilebot Robotics Co., Ltd.

Copyright © 2026-present Agilebot Robotics Co., Ltd.

1/283

C# SDK | Agilebot Robot SDK

C# SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 2283

Prologue | Agilebot Robot SDK

Prologue

Copyright © 2026-present Agilebot Robotics Co., Ltd. 3/283

Version History | Agilebot Robot SDK

Version History

Document Version SDK Version Number Version Date

V3.2 2.0.3.7 2025.12.17

Update Notes

Copyright © 2026-present Agilebot Robotics Co., Ltd. 4 /283

Robot Version Compatibility

The SDK supports Agilebot Scara, Puma, and collaborative robot series. It must be used with

Robot Version Compatibility | Agilebot Robot SDK

devices that have the robot software installed and is compatible with the robot software versions.

Some functions may return different results due to version differences.

When the SDK connects to the robotic arm, it will check the version of the robotic arm motion

control software. If the version is lower than the minimum requirement, the connection will fail. If

it is lower than the recommended version, a prompt indicating that the version is too low will

appear. Please update the robot software version in a timely manner.

Some interfaces of the SDK only support the corresponding version of the controller. Please

check the compatibility of specific interfaces.

SDK Version

0.1.1.X

0.1.2.X

0.2.0.X

1.0.0.X

2.0.X.X

Compatible Robot Software Versions

Copper v7.5.X X, Bronze v7.4.X.X

Copper v7.5.XX, Bronze v7.4.X.X

Copper v7.5.X X, Bronze v7.4.X.X

Copper v7.6.X X, Bronze v7.5.X.X

Copper v7.7.XX, Bronze v7.7.X.X

Copyright © 2026-present Agilebot Robotics Co., Ltd.

Support Status

Discontinued

Discontinued

Discontinued

Supported

Supported

5/283

1 Introduction and Deployment | Agilebot Robot SDK

1 Introduction and Deployment

Copyright © 2026-present Agilebot Robotics Co., Ltd. 6/283

1.1 Environment Requirements | Agilebot Robot SDK

1.1 Environment Requirements
System:
e Windows 10 or later
e Xx86 64 architecture
e NET Version
e 6.0 or higher
e NET Framework Version

e 4.7 or higher

Copyright © 2026-present Agilebot Robotics Co., Ltd. 71283

1.2 Installation

1.2 Installation | Agilebot Robot SDK

This section walks through IDE preparation, SDK installation, and the most common runtime

caveats so you can start experimenting with the Agilebot SDK right away.

IDE Setup

1. Visual Studio is the recommended IDE for C# development. Download it from Download

Visual Studio Tools - Free Install for Windows, Mac, Linux.

2. After installation, launch Visual Studio and finish the initial setup (sign in, install required

workloads, etc.).

Get the SDK and Create a Project

1. Create a new C# Console App and choose .NET 6.0 or later as the target framework.

Create a new project

Recent project templates

i Console App

«+ CLR Empty Project
(.NET)

Empty Project

¢+ Dynamic-Link Library
*= (DLL)

Console App

Copyright © 2026-present Agilebot Robotics Co., Ltd.

Search for templates (Alt+S)

O

Clear all

All project types

Console App

A project for creating a command-line application that can run on .NET on
Windows, Linux and macOS

Ci# Linux macOS Windows Console

Class Library

A project for creating a class library that targets .NET or .NET Standard
C# Android Linux macQS Windows Library

MSTest Test Project

A project that contains MSTest tests that can run on .NET on Windows, Linux
and MacOS.

C# Linux macQOS Windows MSTest Test

7\ Blank App, Packaged (WinU| 3 in Desktop)

A project template for creating a Desktop app based on the Windows Ul
Library (WinUI 3) along with a MSIX package for side-loading or distribution
via the Microsoft Store.

C# XAML Windows Desktop WinUl

8/283

https://visualstudio.microsoft.com/downloads/
https://visualstudio.microsoft.com/downloads/

1.2 Installation | Agilebot Robot SDK

Additional information

Console App C# Linux macOS Windows Console

Framework @

.NET 6.0 (Out of support) >
.NET Core 3.1 (Out of support)

.NET 6.0 (Out of support)

.NET 8.0 (Long Term Support)

.NET 9.0 (Standard Term Support)

Create

2. Open the project properties, set the target OS to Windows, and pick version 7.0 or higher to
leverage the latest WinApp SDK features.

Copyright © 2026-present Agilebot Robotics Co., Ltd. 9/283

1.2 Installation | Agilebot Robot SDK

” File Edit View Git Project Build Debug

2\
) -

4
Solution Explorer

®-S(

Search Solution |

1210|dx3 uoin|os

= Solution 'Cc
4 Console. &
4 & Depel
P @ Ar
b E Fre P
C# Progr "]

sabueyn 115

Copyright © 2026-present Agilebot Robotics Co., Ltd.

Debug ~ Any CPU

Build

Rebuild

Clean

Analyze and Code Cleanup
Pack

Publish...

Upgrade

Run Tests
Debug Tests

Show in Test Explorer

Collapse All Descendants
Scope to This
New Solution Explorer View

File Nesting
Edit Project File

Add

Manage NuGet Packages...
Manage User Secrets
Remove Unused References...

Sync Namespaces

Configure Startup Projects...
Set as Startup Project
Debug

Cut
Remove

Rename

Unload Project
Load Direct Dependencies

Load Entire Dependency Tree

Copy Full Path

Test Analyze

Too

~ P ConsoleAp

Ctrl+Left Arrow

Ctrl+K, P

10/283

Search properties

4 Application
General
Win32 Resources
Dependencies

b Global Usings

> Build

P Package

P Code Analysis

b Debug

> Resources

1.2 Installation | Agilebot Robot SDK

Open in Termina!

X Properties Alt+Enter

Application

General Output type
Specifies the type of application to build.

Console Application

Target framework

Specifies the version of NET that the application targets. This option can have
different values depending on which versions of .NET are installed on your computer.

.NET 6.0 =

Install other frameworks

%% Target OS
Specifies the operating system that this project will target.

l Windows -

Target OS version @
Specifies the version of the operating system this project will target.

7.0 v

8 Supported OS versio

Specifies the minimum OS version that the project will run on. When unspecified, the
target OS version value is implied. Using an earlier version here requires code to add
guards around later version APls.

7.0

Startup object

Defines the entry point to be called when the application loads. Generally this is set
either to the main form in your application or to the 'Main' procedure that should run
when the application starts. Class libraries do not define an entry point.

3. Navigate to Tools > NuGet Package Manager > Package Manager Settings , then add the directory

containing the SDK package as a new package source.

Copyright © 2026-present Agilebot Robotics Co., Ltd.

11/283

1.2 Installation | Agilebot Robot SDK

Solution Explorer ¥ & X soleApp1

7 o-s00 [L= 1 e https://aka.ms/new-consol
Search Solution Explorer (Ctrl+) p- Console.WritelLine("Hello, World!");
= Solution 'ConsoleApp1' (1 of 1 project)
= ConsoleApp1
4 &0 Dependencies
P ;5 Analy Add Project Reference...
P =& Frame Add Shared Project Reference...

C* Program Add COM Reference...

sabueysy 19 Jaio|dx3 uonnjos

Manage NuGet Packages...

Remove Unused References...

Collapse All Descendants Ctrl+Left Arrow
Scope to This

New Solution Explorer View

” File Edit View Git Project Build Debug Test Analyze Tools Extensions Window Help 0 Search ~ ConsoleApp1

® ~ Debug ~ AnyCPU ~ P ConsoleAppt ~ D> B Yo 5.

Tabs #*

Consolehpp Browse Installed Updates NuGet Package Manager: ConsoleApp1

suonesyioN

DL E LT Search (Ctrl+| 2 ~) [¥] Include prerelease | | Show only vulnerable Package source: nugetorg ~ &
Program.cs

No packages found

»
(<7
:
m
%

S
o
o
(1]
2

@
o
2

Test Explorer Powershell Error List Output

5 S %N

Copyright © 2026-present Agilebot Robotics Co., Ltd. 12 /283

1.2 Installation | Agilebot Robot SDK

Options

Search Options (Ctrl+E)

I> Environment

I> Projects and Solutions

I» Source Control

> Work Items

[> Text Editor

I> Debugging

I> Build Insights

I> CMake

I» Cross Platform

I> Database Tools

I> F# Tools

> GitHub

I> Graphics Diagnostics

I IntelliCode

I» Live Share

4 NuGet Package Manager
General
Configuration Files
Package Sources
Package Source Mapping

I> Test

I> Test Adapter for Google Test

I> Text Templating

I> vepkg Package Manager

I» Web Forms Designer

> Web Performance Test Tools

I>» Windows Forms Designer

> Xamarin

I> XAML Designer

Package sources:

nuget.org
https://api.nuget.org/v3/index.json

Microsoft Visual Studio Offline Packages

C:\Program Files (x86)\Microsoft SDKs\NuGetPackages\
sdk

D:\sdk_nupkg
Package source

D:\Agile_sdk\c#_sdk\C#_sdk\Agilebot.IR\bin\Debug
Agile

D:\AgileBot_SDK

AgileSDK
D:\AgileBot_SDK\AgileBot_C#_SDK

/

Name: ;AgiIeSDK ‘
Source: |D:\AgileBot SDK\AgileBot C# SDK |

Update

o< |

Cancel

Copyright © 2026-present Agilebot Robotics Co., Ltd.

13/283

1.2 Installation | Agilebot Robot SDK

Options ? W
Search Options (Ctrl+E) }3| Package sources: + || %
b Environme Type words to search for .
I Projects and Solutions ' nuget.org. ;s .

b Source Control https://api.nuget.org/v3/index.json
b Wik [tsrs Microsoft Visual Studio Offline Packages
b Text Editor C:\Program Files (x86)\Microsoft SDKs\NuGetPackages\
I> Debugging sdk
b Build Insights D:\sdk_nupkg
> CMake Package source
I> Cross Platform D:\Agile_sdk\c#_sdk\C#_sdk\Agilebot.IR\bin\Debug
I> Database Tools Agile
b F# Tools D:\AgileBot_SDK
b GitHub AgileSDK
I Graphics Diagnostics D:\AgileBot_SDK\AgileBot_C# SDK
I IntelliCode
I» Live Share
4 NuGet Package Manager
General

Configuration Files
Package Sources
Package Source Mapping
I» Test
I> Test Adapter for Google Test
I> Text Templating
I> vepkg Package Manager
I» Web Forms Designer
> Web Performance Test Tools

l> Windows Forms Designer N I
l> Xamarin —
> XAML Designer Name: |AgileSDK
Source: D:\AgileBot SDK\AgileBot C# SDK Update

| OK I Cancel

4. Switch the NuGet package source to the newly added entry and install the Agilebot.SDK

package.

Copyright © 2026-present Agilebot Robotics Co., Ltd. 14 / 283

PQ File Edit View Git Project Build
© - Debug ~ Any CPU

> [Tabs &

Browse

ConsoleApp1
NuGet: ConsoleApp1

Program.cs

Debug Test

Search (Ctrl+L)

1.2 Installation | Agilebot Robot SDK

Analyze Tools Extensions Window Help

~ P ConsoleAppt ~ D> B

Installed Updates

PE O

¥ Include prerelease

Agilebot.SDK by Shanghai AgileBot Co Ltd

~ FEFRHEASDK

140 &

nng.NET by Jeikabu

.NET Core bindings to nng (https://github.com/nanomsg/nng)

nng.NET.Shared by Jeikabu

.NET Core bindings to nng (https://github.com/nanomsg/nng)

Test Explorer Powershell Error List Output

Proxy Files and Troubleshooting

£ Search ~

"R Sign in — O

& &

ConsoleApp1

A =

NuGet Package Manager: ConsoleApp1

Package source: AgileSDK ~ &%

(9 Agilebot.SDK

Version: Latest stable 1.0.1 - Install

@ Package source mapping is off. Configure

v) Options 4

Description

FEFRANARASDK

Version: 1.0.1

Author(s): Shanghai AgileBot Co Ltd

Date published: 202557H9H (2025/7/9)

Dependencies
net6.0-windows7.0

nng.NET (>= 1.4.0)
Google.Protobuf (>= 3.30.2)
Grpc.Net.Client (>= 2.48.0)
Microsoft.CSharp (> 7.0)
Newtonsoft.Json (>= 13.0.1)
RestSharp (>= 108.0.3)
System.Collections.NonGeneric (>= 4.3.0)
System.Interactive.Async (>= 6.0.1)
System.Ling.Async (>= 6.0.1)
System.Threading.Channels (>= 6.0.0)
protobuf-net (>= 3.2.52)

e After installing the SDK, the project automatically gains a Tools folder containing

ADMIN

X

controller_proxy_service_windows_amd64.exe , which is required when using the local controller
proxy. If the executable is missing, copy it manually into both the project folder and the build

output directory.

e If the proxy service stays alive because the program exited unexpectedly, open Windows Task

Manager, locate controller_proxy_service_windows_amd64, and end the process.

e While the proxy service is running, do not move the directory where the proxy service is

located to another location.

Networking and Debugging Requirements

1. Before running your code, make sure the host PC is connected to the robot network or shares

the same LAN as the robot.

Copyright © 2026-present Agilebot Robotics Co., Ltd.

15/283

1.2 Installation | Agilebot Robot SDK

2. Keep the network stable during debugging to prevent the proxy service from dropping

unexpectedly.

Edit View

0Q File
© ~ Lok

Tabs #

ConsoleApp1
ConsoleApp
ConsoleApp1*
NuGet: ConsoleAppT

Program.cs

ssBueyy o Jaiojdx3 uonnjos

Test Explorer Powershell

[item(s) Saved

Git

Debug

Project Build Debug Test Analyze Tools Extensions Window Help = 0 Search ~ ConsoleAppl

- AnyCPU ~ P ConsoleAppt ~ D> B ¥

~ g Test

&) ConsoleApp1

(& Agilebot.IR;

Task Main()

22:17254Y;

controllerIP = "1@. 5

Arm controller = Arm(controllerIP);

0K ?

info, code) = controller.GetArmModelInfo();

.WriteLine(code != StatusCode.OK ? code.GetDescription() :

code = controller.Disconnect();

Console.WriteLine(code != StatusCode.OK ? code.GetDescription() :

89% © No issues found

Error List Output

code.GetDescription() : "Su

R Signin = a
2 &

ssfully connected.");

"Model: " + info);

"Successfully disconnected.");

1 Add to Source Control «

@ Select Repository ~

Yy
+

X

ADMIN

suonesyIRoN

Q

O Microsoft Visual Studio Debug X HE |2

Copyright 2016 Agilebot Robotics Ltd. All rights reserved.
SDK Version: 1.0.1.0.8692ba82

Robot Model: GBT-C12A

Controller version: 1.4.3.20250704.101db311

Successfully connected.

Model: GBT-C12A

Successfully disconnected.

D:\Documents\ConsoleAppl\ConsoleAppl\bin\Debug\net6.0-windows\ConsoleAppl.exe (process 55208) exited with code 0 (0x0).
To automatically close the console when debugging stops, enable Tools->Options—->Debugging—>Automatically close the conso
le when debugging stops.

Press any key to close this window .

Copyright © 2026-present Agilebot Robotics Co., Ltd. 16/ 283

1.3 Example Program Usage | Agilebot Robot SDK

1.3 Example Program Usage

This chapter walks through the C# example project that ships with the SDK. By switching the

startup item you can quickly try out each major SDK class.

09 wur &EE (G) WEP) ERE)) N)) ¥ BOW) mEH) C#_example

~ AnyCPU

v & X [EAm ~ % Program ~ TaMain(

© SRHEIEREE § 6 FH6 =E CRIF

1L0/04 22 3§ yhy-401-c#201 « [ctsdka Oy

Run the Example

1. Open and run C# _example ; a console window appears automatically.
2. Enter the robot IP address when prompted.
3. Choose where to host the proxy service (robot controller or local PC).

4. Click Start to load the selected example.

Copyright © 2026-present Agilebot Robotics Co., Ltd. 17 /283

1.3 Example Program Usage | Agilebot Robot SDK

O D:\Agile_sdk\c#_sdk\C#_exam| X + v

BB N4 28 IPitb IiE /Please enter controller IP address:
B i#E R ZEFEHEIAE /Enter directly to use default value (EKiA /Default: 10.27.1.254)

BRI AT /Please select proxy type:

i, = Kt&h%‘]ﬁ%ﬁfi/Locat controller proxy

2 - #1288 AP EBCER /Robot internal proxy

B iZE % F A IAE /Enter directly to use default value (E{JA/Default: ZAMEi=#4I28/CIE /Local controller proxy)
P

& Fg IPHE 3t /Using IP: 10.27.1.254
REE B /Proxy type: #l88 AR EB{XE /Robot internal proxy

BMANERITHRIEES /Enter the code number to execute:
1 - Connect (JERZHEEA)

- GetArmModelInfo (FKEX#128

- GetRobotState (3kKHY#128

- GetCtrlState (3KENiZ %28

- GetServoState (3%EY{AMRI=

- SwitchLedLight (FFLED{SRAT)

- ServoOperation ({&fREX#R(E)

- Estop (Hlz8AESEFL)

- GetVersion (FRENHL2E AI=HIEEIRA)
- IZ1THATE /Run all code

fth /Oother - iE Y /Exit

2
3
4
5
6
i
8
9
(]
H

Proxy Types
¢ Robot Internal Proxy: Uses the proxy built into the robot controller. Recommended for
controller firmware v7.7.0.0 or newer.

¢ Local Controller Proxy: Uses the lightweight proxy shipped with the SDK and runs on the
host PC. This is the only option when the controller firmware is below v7.7.0.0.

e For Airbot robots only the Robot Internal Proxy is supported; the local proxy cannot reach
Airbot controllers.

Copyright © 2026-present Agilebot Robotics Co., Ltd. 18/ 283

2 Glossary

Term

teach pendant

SDK

robot network

controller

robotic arm

servo system

teaching

joint

Cartesian

coordinates

pose

trajectory

payload

coordinate

system

ovC

OAC

2 Glossary | Agilebot Robot SDK

Description

The pendant attached to the robot, used for teaching and controlling the robot
Software Development Kit, used for programming and controlling the robot
The network connection between the robot and the external computer

The control unit of the robot, responsible for executing motion commands,

processing sensor data, and managing robot status
The main moving part of the robot, consisting of multiple joints and links

The motor drive system that controls robot joint motion, providing precise position

and speed control

The process of recording robot motion trajectories and actions through manual

operation of the robot or teach pendant

The movable component connecting various links in the robot arm, each joint

corresponding to one degree of freedom

A three-dimensional coordinate system based on three mutually perpendicular X, Y,

Z axes, used to describe the robot's position and orientation in space

The combination of the robot's position and orientation in space, including

position coordinates and rotation angles

The path of the robot's end effector moving in space, usually composed of a series

of pose points

The weight and objects carried by the robot's end effector, affecting the robot's

motion performance and accuracy

A reference system used to describe robot position and orientation, including base

coordinate system, tool coordinate system, user coordinate system, etc.

Overall Velocity Control, used to set the overall motion speed multiplier of the

robot

Overall Acceleration Control, used to set the overall acceleration multiplier of the

Copyright © 2026-present Agilebot Robotics Co., Ltd.

19/283

Term

TF

UF

TCS

DH parameters

PR register

MR register

SR register

R register

MH register

Ml register

BAS

Scara

collaborative

robot

industrial robot

Copper

Bronze

2 Glossary | Agilebot Robot SDK

Description

robot
Tool Frame, a coordinate system with the robot's end tool as the origin

User Frame, a user-defined coordinate system for convenient programming and

positioning
Teach Coordinate System, a coordinate reference system used during teaching

Denavit-Hartenberg parameters, standard parameters used to describe the

geometric relationships of robot links

Pose Register, a register used to store robot pose information

Motion Register, a register used to store motion-related parameters
String Register, a register used to store string information

Real Register, a register used to store numerical information

Modbus Holding Register, a holding register for Modbus communication
Modbus Input Register, an input register for Modbus communication

Basic Script, a high-level programming language used to write robot control

programs
Selective Compliance Assembly Robot Arm, a type of four-axis industrial robot

A robot capable of safe collaboration with humans, usually equipped with force

sensing and collision detection capabilities

A robot used for industrial automation production, usually with high precision, high

speed, and high load capacity
The codename for Agilebot's collaborative robot product line

The codename for Agilebot's industrial robot product line

Copyright © 2026-present Agilebot Robotics Co., Ltd.

20/ 283

3 Data Structures

3.1 StatusCode

Description

3 Data Structures | Agilebot Robot SDK

Status codes returned by the interface.

Import

using Agilebot.IR;

Fields

Name

OK

INCOMPATIBLE_VERSION
TIMEOUT
INTERFACE_NOT_IMPLEMENTED
INDEX_OUT_OF_RANGE
UNSUPPORTED_FILETYPE
UNSUPPORTED_PARAMETER
UNSUPPORTED_SIGNALTYPE
PROGRAM_NOT_FOUND

PROGRAM_POSE_NOT_FOUND

Copyright © 2026-present Agilebot Robotics Co., Ltd.

Enum

Value

-10

Description

Execution successful
Incompatible version
Connection timeout

Interface not implemented
Index out of range
Unsupported file type
Unsupported robot parameter
Unsupported 10 signal type
Program not found

Program pose information not found

c#

217283

Name

WRITE_PROGRAM_FAILED
GET_ALARM_CODE_FAILED
WRONG_POSITION_INFO
UNSUPPORTED_TRA_TYPE
FILE_NOT_FOUND
FILE_ALREADY_EXIST
GET_ALARM_DESC _FAILED
RESET_ALARM_ERRORS_FAILED
GET_ALL ALARMS_FAILED

WRONG_DATA_FORMAT
CONNECT_FAILED

POSE_INDEX_DUPLICATED
CONTROLLER_ERROR

OTHER_REASON

3.2 RobotState

Description

Robot operation status.

Import

Copyright © 2026-present Agilebot Robotics Co., Ltd.

3 Data Structures | Agilebot Robot SDK

Enum

Value

-11

-12

-13

14

-15

-16

-17

-18

-19

-20

-21

-23

-254

-255

Description

Failed to update program pose information

Failed to access alarm service to get alarm code
Controller returns incorrect position information
Unsupported motion type

File or folder not found

File already exists

Failed to get alarm information based on alarm code
Failed to reset alarm information

Failed to get all alarm information

Incorrect data format received

Initialization connection failed, please check IP

address or control cabinet service
Pose index duplicated
Controller error, please contact the developer

Other reasons

221283

using Agilebot.IR.Types;

Fields

Name
WRONG_DATA
ROBOT_IDLE
ROBOT_RUNNING
ROBOT_TEACHING
ROBOT_IDLE_TO_RUNNING
ROBOT_IDLE_TO_TEACHING
ROBOT_RUNNING_TO_IDLE

ROBOT_TEACHING_TO_IDLE

3.3 CtriState

Description

Controller operation status.

Import

using Agilebot.IR.Types;

Fields

Copyright © 2026-present Agilebot Robotics Co., Ltd.

3 Data Structures | Agilebot Robot SDK

Enum Value

101

102

103

104

Description

Unknown state

Robot idle

Robot running

Robot teaching

Robot intermediate state, idle to running
Robot intermediate state, idle to teaching
Robot intermediate state, running to idle

Robot intermediate state, teaching to idle

c#

c#

231283

3 Data Structures | Agilebot Robot SDK

Enum
Name
Value

WRONG_DATA -1
CTRL_INIT 0
CTRL_ENGAGED 1
CTRL_ESTOP 2
CTRL_TERMINATED 3
CTRL_ANY_TO _ESTOP 101
CTRL_ESTOP_TO_ENGAGED 102
CTRL_ESTOP_TO_TERMINATED 103

3.4 ServoState

Description

Servo controller status.

Import
using Agilebot.IR.Types;

Fields

Name Enum Value

WRONG_DATA -1
SERVO _IDLE 1

Copyright © 2026-present Agilebot Robotics Co., Ltd.

Description

Unknown controller state
Controller initializing
Controller enabled
Controller emergency stop

Controller terminated

Controller intermediate state, any to emergency stop

Controller intermediate state, emergency stop to

enabled

Controller intermediate state, emergency stop to

terminated

Description
Unknown servo controller state

Servo controller idle

c#

241 283

3 Data

Name Enum Value
SERVO_RUNNING 2
SERVO_DISABLE 3
SERVO_WAIT_READY 4
SERVO_WAIT_DOWN 5
SERVO_INIT 10

3.5 TransformStatusEnum

Description

Structures | Agilebot Robot SDK

Description

Servo controller running

Servo controller disabled

Servo controller waiting for ready
Servo controller waiting for shutdown

Servo controller initializing

Enum for offline trajectory file conversion status.

Import

using Agilebot.IR.Types;

Fields

Name Enum Value
TRANSFORM_START 0
TRANSFORM_RUNNING 1
TRANSFORM_SUCCESS 2
TRANSFORM_FAILED 3
TRANSFORM_NOT_FOUND 4
TRANSFORM_UNKNOWN -1

Copyright © 2026-present Agilebot Robotics Co., Ltd.

c#

Description

Conversion task started

Conversion task in progress

Conversion task completed successfully
Conversion task failed

Conversion task not found

Unknown conversion task status

257283

3 Data Structures | Agilebot Robot SDK

3.6 Payloadinfo

Description

The Payloadinfo class is used to store the robot's payload information, including payload ID,
weight, center of mass, and moment of inertia. This information is crucial for kinematic and

dynamic analysis of the robot under load conditions, especially for path planning and torque

calculation.
Import
c#
using Agilebot.IR.Motion;
Properties
Property Type Description
; Payload ID, used to uniquely identify different payload
| uint
configurations
Comment, used to describe additional information about the
Comment string
payload
Weight double Payload weight (unit: kilograms)
MassCenter MassCenter Payload center of mass (X, Y, Z coordinates)
InertiaMoment InertiaMoment Payload moment of inertia (LX, LY, LZ)
Example
c#

PayloadInfo payload = new PayloadInfo
{
Id = 1,
Comment = "Sample Payload",
Weight = 5.0,
MassCenter = new MassCenter { X = 10.0, Y = 20.0, Z = 30.0 },

Copyright © 2026-present Agilebot Robotics Co., Ltd. 26 /283

3 Data Structures | Agilebot Robot SDK

InertiaMoment = new InertiaMoment { LX = 0.1, LY = 0.2, LZ = 0.3 }
s

3.6.1 MassCenter

Description

The MassCenter class is used to represent the center of mass of the payload, containing the X, Y,
and Z coordinates. The center of mass is the geometric center of the payload in space and is

important for robot motion control and torque calculation.

Import

c#
using Agilebot.IR.Motion;

Properties
Property Type Description
X double X-coordinate of the center of mass (unit: millimeters)
Y double Y-coordinate of the center of mass (unit: millimeters)
Z double Z-coordinate of the center of mass (unit: millimeters)

3.6.2 InertiaMoment

Description

The InertiaMoment class is used to represent the moment of inertia of the payload, containing
the LX, LY, and LZ components. The moment of inertia represents the payload's resistance to

rotational changes and is important for robot dynamics analysis and control.

Import

c#
using Agilebot.IR.Motion;

Copyright © 2026-present Agilebot Robotics Co., Ltd. 271283

3 Data Structures | Agilebot Robot SDK

Properties
Property Type Description
LX double X-component of the moment of inertia (unit: kilograms-millimeters?)
LY double Y-component of the moment of inertia (unit: kilograms-millimeters?)
LZ double Z-component of the moment of inertia (unit: kilograms-millimeters?)

3.7 TransformState

Description

Enum for offline trajectory file conversion status.

Import

c#
using Agilebot.IR.Types;

Fields
Enum Value Value Description
TRANSFORM_START 0 Conversion task started
TRANSFORM_RUNNING 1 Conversion task in progress
TRANSFORM_SUCCESS 2 Conversion task completed successfully
TRANSFORM_FAILED 3 Conversion task failed
TRANSFORM_NOT_FOUND 4 Conversion task not found
TRANSFORM_UNKNOWN -1 Data error, unknown status

Copyright © 2026-present Agilebot Robotics Co., Ltd. 281283

3.8 TCSType

Description

TCS coordinate system type.

Import

using Agilebot.IR.Types;

Fields
Name Enum Value
WRONG_TYPE -1
JOINT 0
BASE 1
WORLD 2
USER 3
TOOL 4
RTCP_USER 5
RTCP_TOOL 6

3.9 MotionPose

Description

3 Data Structures | Agilebot Robot SDK

Description

Incorrect type

Joint space

Base coordinate system
World coordinate system
User coordinate system

Tool coordinate system

RTCP user coordinate system

RTCP tool coordinate system

c#

Describes the robot's position structure. In the coordinate data, the distance in the XYZ direction

is measured in millimeters (mm), and the angle data is measured in degrees (°). In some versions,

Copyright © 2026-present Agilebot Robotics Co., Ltd.

29283

3 Data Structures | Agilebot Robot SDK

the angle information is in radians; see the function list return result description for details.

Import
c#
using Agilebot.IR.Motion;
Properties
Property Type Description
CartData BaseCartData Cartesian data
Joint Joint Joint data
Pt PoseType Position type, defaults to Unknown
Example
c#

MotionPose motionPose = new MotionPose();
motionPose.Pt = PoseType.Cart;

motionPose.CartData.Position = new Position{

X = 300,
Y = 300,
Z = 300,
A =20,
B =0,
c=09

}s
motionPose.CartData.Posture = new Posture{
WristFlip = 1,
ArmUpDown = 1,
ArmBackFront = 1,
ArmLeftRight = 1,
TurnCircle = new List<int>(9){0,0,0,0,0,0,0,0,0}

}s

MotionPose motionPose2 = new MotionPose();

motionPose2.Pt = PoseType.Joint;

Copyright © 2026-present Agilebot Robotics Co., Ltd. 30/283

3 Data Structures | Agilebot Robot SDK

motionPose2.Joint = new Joint{

J1 = o,
32 = o,
33 = 60,
J4 = 60,
J5 = o,
36 = 0

};

3.10 BaseCartData

Description

Describes the robot's position and posture information in the Cartesian coordinate system. The
spatial coordinates are measured in millimeters (mm), and the posture information includes wrist

and arm postures as well as the rotation counts of each axis.

Import

c#
using Agilebot.IR.Types;
Properties
Property Type Description
Position Position Robot's spatial coordinates (X, Y, Z, A, B, Q)
Posture Posture Robot's posture information (wrist, arm posture, and axis rotation counts)

Example

c#

BaseCartData cartData = new BaseCartData();
cartData.Position.X = 100.0;
cartData.Position.Y = 200.0;

Copyright © 2026-present Agilebot Robotics Co., Ltd. 31/283

cartData.Position.Z

3 Data Structures | Agilebot Robot SDK

300.0;

cartData.Posture.ArmUpDown = 1;

cartData.Posture.ArmBackFront = -1;

Console.WriteLine(cartData.ToString());

3.10.1 Position

Description

Describes the robot's position and rotation angle coordinates in the Cartesian coordinate system.

The distance in the X, Y, Z directions is measured in millimeters (mm), and the angles in the A, B,

C directions are measured in degrees (°).

Import

using Agilebot.IR.Types;

Properties

Property Type

X double

Y double

Z double

A double

B double

C double
Example

Description

Distance in the X direction of the Cartesian coordinate system (unit:

millimeters)

Distance in the Y direction of the Cartesian coordinate system (unit:

millimeters)

Distance in the Z direction of the Cartesian coordinate system (unit:

millimeters)
Angle in the A direction of the Cartesian coordinate system (unit: degrees)
Angle in the B direction of the Cartesian coordinate system (unit: degrees)

Angle in the C direction of the Cartesian coordinate system (unit: degrees)

Copyright © 2026-present Agilebot Robotics Co., Ltd.

c#

32/283

Position

position.
position.
position.
position.
position.

position.

3 Data Structures | Agilebot Robot SDK

c#

position = new Position();

w > N < X

C

100.0;
200.0;
300.0;
45.0;
30.0;
60.0;

Console.WriteLine(position.ToString());

3.10.2 Posture

Description

Describes the robot's posture information, including wrist and arm postures as well as the

rotation counts of each axis. Posture information is used to define the robot's specific posture in

space.

Import

using Agilebot.IR.Types;

Properties
Property

WristFlip

ArmUpDown

ArmBackFront

Copyright © 2026-present Agilebot Robotics Co., Ltd.

Type

int

int

int

Description

Wrist flip posture. Range: -1, 0, 1. For a 6-axis robot J5 joint config: 1
= wrist flipped down, -1 = wrist flipped up.

Arm up/down posture. Range: -1, 0, 1. For a 6-axis robot J3 joint
config: 1 = arm above (forward condition: joint-3 above the line from
joint-4 to joint-2 and joint-3 angle < 0), -1 = arm below (joint-3 angle
> 0).

Arm front/back posture. Range: -1, 0, 1. For a 6-axis robot J1 joint
config: 1 = arm in front (collaborative robot facing forward, joint-2 on
the left side of joint-1), -1 = arm behind (joint-2 on the right side of
joint-1).

c#

33/283

Property Type
ArmLeftRight int
TurnCircle List<int>

Example

3 Data Structures | Agilebot Robot SDK

Description

Arm left/right posture. Range: -1, 0, 1. For a 4-axis SCARA robot J2

joint config: 1 = SCARA arm on the right, -1 = SCARA arm on the left.

Multi-turn counts for each axis. Range: -1, 0, 1. When the axis is at 0°,
turn count = 0. During linear or circular moves the controller auto-
selects the turn count closest to the start pose, so the final value may
differ from the taught posture. For axes 1, 4, 5, 6: > 180° — value > 1;
-179.99° ~ 179.99° - 0; < -180° — value < -1.

Posture posture = new Posture();

posture.TurnCircle = new List<int>(9){9,9,0,0,0,0,0,0,0};

posture.WristFlip = 1;
1;

posture.ArmUpDown
posture.ArmBackFront = -1;

posture.ArmLeftRight 1;

Console.WriteLine(posture.ToString());

3.11 Joint

Description

c#

Describes the angle data of each robot joint. Each joint angle value is used to define the robot's

specific position in joint space. The angle unit is typically degrees (°), but the specific unit should

be confirmed based on the actual robot system.

Import

using Agilebot.IR.Types;

Properties

Copyright © 2026-present Agilebot Robotics Co., Ltd.

c#

34 /283

Property

]

J2

J3

J4

J5

J6

J7

J8

J9

Example

Joint

joint.
joint.
joint.
joint.
joint.
joint.
joint.
joint.

joint.

joint

J1
J2
J3
J4
J5
Jé
J7
J8
J9

Type

double

double

double

double

double

double

double

double

double

3 Data Structures | Agilebot Robot SDK

Description

Angle of the robot's first joint
Angle of the robot's second joint
Angle of the robot's third joint
Angle of the robot's fourth joint
Angle of the robot's fifth joint
Angle of the robot's sixth joint
Angle of the robot's seventh joint
Angle of the robot's eighth joint

Angle of the robot's ninth joint

= new Joint();

45.0;
30.0;
60.0;
90.0;
120.0;
135.0;
150.0;
180.0;
225.0;

Console.WriteLine(joint.ToString());

Notes

c#

e The unit of joint angles is typically degrees (°), but some robot systems may use radians (rad).

Please confirm the unit based on the actual robot system documentation.

e The range of joint angles is usually limited by the robot hardware. Exceeding the range may

cause errors or damage the equipment.

Copyright © 2026-present Agilebot Robotics Co., Ltd.

35/283

3 Data Structures | Agilebot Robot SDK

3.12 PoseType

Description

Defines the type of robot pose data, used to distinguish whether the data is joint angle data,
Cartesian space coordinates, or unknown type. This enum is used to identify the format of robot

pose data so that different types of data can be correctly processed in the program.

Import

c#
using Agilebot.IR.Types;

Enum Values

Enum Value Description

Unknown Unknown type, indicating the pose data type is not defined

Joint Joint angle data type, indicating the data is joint angles

Cart Cartesian space coordinate data type, indicating the data is Cartesian coordinates

3.13 DHparam

Description

The DHparam class is used to describe the robot link parameters based on the Denavit-

Hartenberg parameters (D-H parameters). These parameters are used to define the geometric

relationships between robot joints and are the basis for robot kinematics and dynamics analysis.

Import

Copyright © 2026-present Agilebot Robotics Co., Ltd. 36 /283

https://en.wikipedia.org/wiki/Denavit%E2%80%93Hartenberg_parameters
https://en.wikipedia.org/wiki/Denavit%E2%80%93Hartenberg_parameters

3 Data Structures | Agilebot Robot SDK

c#
using Agilebot.IR.Types;
Properties
Property Type Description
id uint Unique identifier for the link, used to distinguish different links
b Link length, representing the axial distance between adjacent joints (unit:
a ouple
millimeters)
Link twist angle, representing the angle between adjacent joint axes (unit:
alpha double)
degrees or radians)
; b Joint distance, representing the distance along the current joint axis to the
oubple
next joint (unit: millimeters)
Joint angle offset, representing the initial angle offset of the joint (unit:
offset double)
degrees or radians)
Constructor
c#

public DHparam(uint id, double d, double a, double alpha, double offset)

Notes
¢ Unit consistency: The units of a and d should be consistent (typically millimeters), and the
units of alpha and offset should also be consistent (typically degrees or radians).

¢ Angle unit: In some robot systems, the angle unit may be radians instead of degrees. Please
confirm and unify the units based on actual requirements.

e D-H parameter definition: The definition of D-H parameters depends on the specific robot
model and coordinate system conventions. When using the DHparam class, ensure that the
parameter definitions are consistent with the robot's actual geometric structure.

Copyright © 2026-present Agilebot Robotics Co., Ltd. 371283

3 Data Structures | Agilebot Robot SDK

3.14 CartStatus

Description

The CartStatus class is used to represent the status of each axis in the Cartesian coordinate

system. The status of each axis is represented by a boolean value, with true indicating the axis is

available and false indicating it is not. This status class is commonly used in robot motion

control to determine whether a particular axis can function properly.

Import

using Agilebot.IR.Types;

Properties
Property Type Description
X bool Status of the X direction, defaults to
Y bool Status of the Y direction, defaults to
Z bool Status of the Z direction, defaults to
A bool Status of the A direction, defaults to
B bool Status of the B direction, defaults to
C bool Status of the C direction, defaults to

3.15 JointStatus

Description

Copyright © 2026-present Agilebot Robotics Co., Ltd.

true (available)

true (available)

true (available)

true (available)

true (available)

true (available)

c#

38/283

3 Data Structures | Agilebot Robot SDK

The JointStatus class is used to represent the status of each robot joint. The status of each joint

is represented by a boolean value, with true indicating the joint is available and false indicating

it is not. This status class is commonly used in robot motion control to determine whether a

particular joint can function properly.

Import

using Agilebot.IR.Types;

Properties
Property Type
N bool
J2 bool
J3 bool
J4 bool
J5 bool
J6 bool
J7 bool
J8 bool
J9 bool

3.16 DragStatus

Description

Description

Status of Joint 1, defaults to

Status of Joint 2, defaults to

Status of Joint 3, defaults to

Status of Joint 4, defaults to

Status of Joint 5, defaults to

Status of Joint 6, defaults to

Status of Joint 7, defaults to

Status of Joint 8, defaults to

Status of Joint 9, defaults to

true

true

true

true

true

true

true

true

true

(available)

(available)

(available)

(available)

(available)

(available)

(available)

(available)

(available)

c#

The DragStatus class is used to represent the drag status of the robot arm, including the status

of the Cartesian coordinate system and the joints. Additionally, it includes a flag

Copyright © 2026-present Agilebot Robotics Co., Ltd.

39/283

3 Data Structures | Agilebot Robot SDK

IsContinuousDrag to indicate whether the robot is in continuous drag mode. This status class is

commonly used in robot drag control to determine the current drag mode and the status of each

axis/joint.
Import
c#
using Agilebot.IR.Types;
Properties
Property Type Description
CartStatus CartStatus Status of the Cartesian coordinate system
JointStatus JointStatus Status of the joints
IsContinuousDrag bool Whether the robot is in continuous drag mode, defaults to false
Constructor
c#
public DragStatus()
e Initializes CartStatus and JointStatus , and sets IsContinuousDrag to false
Example
c#

DragStatus dragStatus = new DragStatus();

dragStatus.CartStatus.X = false; // X-axis unavailable

dragStatus.JointStatus.J3 = false; // Joint 3 unavailable
dragStatus.IsContinuousDrag = true; // Set to continuous drag mode
Console.WritelLine($"X-axis status: {dragStatus.CartStatus.X}, Joint 3 status: {drag
Status.JointStatus.J3}, Is continuous drag: {dragStatus.IsContinuousDrag}");

Copyright © 2026-present Agilebot Robotics Co., Ltd. 40/ 283

3 Data Structures | Agilebot Robot SDK

3.17 ProgramPose

Description

The ProgramPose class is used to represent a pose (position and orientation) in a program, which
can be joint coordinates or Cartesian coordinates. This class includes a unique identifier for the
pose, data (joint or Cartesian coordinate information), name, and comment. This class facilitates

the management and manipulation of pose information in robot programs.

Import
c#
using Agilebot.IR.Types;
Properties
Property Type Description
Id int Unique identifier for the pose
PoseData ProgramPoseData Pose data, including joint or Cartesian coordinate information
Name string Name of the pose
Comment string Comment for the pose
Constructor
c#
public ProgramPose()
e |nitializes Id , PoseData , Name , and Comment .
Example
c#

ProgramPose programPose = new ProgramPose();

programPose.Id = 1; // Set the unique identifier for the pose

Copyright © 2026-present Agilebot Robotics Co., Ltd. 41 /283

3 Data Structures | Agilebot Robot SDK

programPose.PoseData = new ProgramPoseData(); // Create pose data
programPose.Name = "Posel"; // Set the name of the pose

programPose.Comment = "This is a sample pose"; // Set the comment for the pose
Console.WriteLine($"Pose ID: {programPose.Id}, Name: {programPose.Name}, Comment:

{programPose.Comment}");

3.17.1 ProgramPoseData

Description

The ProgramPoseData class is used to represent pose data in a program, including Cartesian
space coordinates and posture information, joint angle information, and pose type. This class

facilitates the storage and management of specific pose data.

Import

c#
using Agilebot.IR.Types;

Properties
Property Type Description
CartData ProgramCartData Cartesian data
Joint Joint Joint data
Pt PoseType Pose type, defaults to Unknown

3.17.2 ProgramCartData

Description

The ProgramCartData class is used to represent the Cartesian coordinate system data in a
program. It references the BaseCartData class to include spatial coordinates and posture
information, and determines the coordinate system type through the values of Uf and Tf . Uf

represents the User Frame, and Tf represents the Tool Frame. If the values of Uf and Tf are

Copyright © 2026-present Agilebot Robotics Co., Ltd. 42 [283

3 Data Structures | Agilebot Robot SDK

-1 , it indicates the use of the system's default coordinate system. This class is used in robot
programming to define and manage pose information in Cartesian space.
Import

c#
using Agilebot.IR.Types;

Properties
Property Type Description
BaseCart BaseCartData Robot's Cartesian position and posture information
uf int User Frame, -1 indicates the use of the system's coordinate system
Tf int Tool Frame, -1 indicates the use of the system's coordinate system

3.18 FileType

Description

The FileType enum is used to define the types of files allowed for upload. It distinguishes
between different types of robot program files based on their source and format. This enum is
used in the robot programming environment for file management, upload, and program parsing,

helping the system correctly identify and process different types of program files.

Import

c#
using Agilebot.IR.Types;

Enum Values

Copyright © 2026-present Agilebot Robotics Co., Ltd. 43 /283

3 Data Structures | Agilebot Robot SDK

Enum Value Description

Program files generated by the user through point selection, each program
UserProgram .)
includes .xml and .json files.

Program files generated by the user through block programming, each program
BlockProgram . .
includes .block , xml ,and .son files.

Offline trajectory program files, typically used for path planning in offline
TrajectoryProgram)
programming.

3.19 SignalType

Description

The SignalType enum is used to define the types of signals supported in the robot system. It
distinguishes between various digital and analog signals based on their purpose and source. This
enum is used in the robot control system for signal configuration, signal processing, and logic

judgment, helping the system accurately identify and manage different types of signals.

Import

c#
using Agilebot.IR.Types;

Enum Values

Enum Value Description
DI Digital Input, used to receive external digital signals.
DO Digital Output, used to control external devices or actuators.
RI Robot Input, used to receive digital signals from the robot's wrist.
RO Robot Output, used to control actuators on the robot's wrist.
ul User Input, used to receive user-defined digital signals.

Copyright © 2026-present Agilebot Robotics Co., Ltd. 44 | 283

3 Data Structures | Agilebot Robot SDK

Enum Value Description

uo User Output, used to output user-defined digital signals.

TDI Tool Digital Input, used to receive digital signals from the tool end.
TDO Tool Digital Output, used to control actuators on the tool end.

Gl Group Input, used to receive a combination of digital signals.

GO Group Output, used to output a combination of digital signals.

Al Analog Input, used to receive continuous analog signals.

AO Analog Output, used to output continuous analog signals.

TAI Tool Analog Input, used to receive analog signals from the tool end.

3.20 PoseRegister

Description

The PoseRegister class is used to represent a pose (position and orientation) in a PR register,
which can be joint coordinates or Cartesian coordinates. This class includes a unique identifier for
the pose, data (joint or Cartesian coordinate information), name, and comment. This class

facilitates the management and manipulation of pose information in robot programs.

Import

c#
using Agilebot.IR.Types;

Properties
Property Type Description
Id int Unique identifier for the pose

Copyright © 2026-present Agilebot Robotics Co., Ltd. 45 /283

3 Data Structures | Agilebot Robot SDK

Property Type Description
PoseData PoseRegisterData Pose data, including joint or Cartesian coordinate information
Name string Name of the pose
Comment string Comment for the pose

Constructor

c#
public PoseRegister()

e |nitializes Id , PoseData , Name , and Comment .

Example
c#

PoseRegister pose = new PoseRegister();

pose.Id = 1; // Set the unique identifier for the pose

pose.PoseData = new PoseRegisterData(); // Create pose data

pose.Name = "Posel"; // Set the name of the pose

pose.Comment = "This is a sample pose"; // Set the comment for the pose

Console.WriteLine($"Pose ID: {pose.Id}, Name: {pose.Name}, Comment: {pose.Commen

t}")s

3.20.1 PoseRegisterData

Description

The PoseRegisterData class is used to represent pose data in a PR register, including Cartesian
space coordinates and posture information, joint angle information, and pose type. This class

facilitates the storage and management of specific pose data.

Import

c#
using Agilebot.IR.Types;

Copyright © 2026-present Agilebot Robotics Co., Ltd. 46/ 283

3 Data Structures | Agilebot Robot SDK

Properties
Property Type Description
CartData BaseCartData Cartesian data
Joint Joint Joint data
Pt PoseType Pose type, defaults to Unknown

3.22 Coordinate

Description

The Coordinate class is used to represent a coordinate system in the robot system. It includes
basic information about the coordinate system, such as a unique identifier (ID), name, comment,
motion group number, and specific pose data. This class is used in robot programming and
control systems to define and manage the position and orientation of coordinate systems,

facilitating motion planning and path control in programs.

Import
c#
using Agilebot.IR.Types;
Properties
Property Type Description
Id int Unique identifier for the coordinate system
Name of the coordinate system, used to identify and describe the
Name string)
coordinate system
Comment for the coordinate system, used to further explain the purpose
Comment string o .
or characteristics of the coordinate system
Copyright © 2026-present Agilebot Robotics Co., Ltd. 47 | 283

3 Data Structures | Agilebot Robot SDK

Property Type Description

Motion group number to which the coordinate system belongs, used for

Groupld int .]
classification and management of coordinate systems
Specific pose data of the coordinate system, including position and
Data Position . L .
orientation information
Example

c#
// Create a Coordinate instance

Coordinate coordinate = new Coordinate

{
Id = 1, // Set the unique identifier

Name = "UserCoordinatel", // Set the name

Comment = "This is a user-defined coordinate system", // Set the comment

GroupId = 1, // Set the motion group number

Data = new Position { X = 100, Y = 200, Z = 300, A = 45, B =30, C =60 } // Se
t the pose data

}s

3.22.1 CoordinateType

Description

The CoordinateType enum is used to define the type of coordinate system. It distinguishes
between user coordinate systems and tool coordinate systems. This enum is used in robot
programming and control systems to clearly specify the purpose of the coordinate system,

helping the system correctly handle operations related to coordinate systems.

Import

c#
using Agilebot.IR.Types;

Enum Values

Copyright © 2026-present Agilebot Robotics Co., Ltd. 48 /283

Enum Value Description

3 Data Structures | Agilebot Robot SDK

UserCoordinate User coordinate system, used to define user-defined coordinate systems.

Tool coordinate system, used to define the coordinate system of tools (e.g., end

ToolCoordinate
effectors).

3.22.2 CoordSummary

Description

The CoordSummary class is used to represent the summary information of a coordinate system.

It includes the type, unique identifier, name, comment, and group ID of the coordinate system.

This class is used in the robot programming environment to manage and store metadata of

coordinate systems, facilitating quick access and manipulation of coordinate systems in

programs.

Import

using Agilebot.IR.Types;

Properties
Property Type
Type CoordinateType
Id int
Name string
Comment string
Groupld int

Copyright © 2026-present Agilebot Robotics Co., Ltd.

c#

Description

Type of the coordinate system, which can be a user coordinate

system or a tool coordinate system
Unique identifier for the coordinate system
Name of the coordinate system

Comment for the coordinate system, used to describe its purpose or

characteristics

Group ID to which the coordinate system belongs, used for

classification and management of coordinate systems

49 /283

3 Data Structures | Agilebot Robot SDK

Example

c#
// Create a CoordSummary instance

CoordSummary coordSummary = new CoordSummary

{
Type = CoordinateType.UserCoordinate, // Set to user coordinate system
Id = 1, // Set the unique identifier
Name = "UserCoordl", // Set the name
Comment = "This is a user-defined coordinate system", // Set the comment
GroupId = @ // Set the group ID

¥

Copyright © 2026-present Agilebot Robotics Co., Ltd. 50/ 283

4 Methods and Examples | Agilebot Robot SDK

4 Methods and Examples

Copyright © 2026-present Agilebot Robotics Co., Ltd. 51/283

4.1 Basic Operations of the Robot | Agilebot Robot SDK

4.1 Basic Operations of the Robot

Method Name Arm(string controllerlP , string teachPanellP = null, bool localProxy = true)

Agilebot robot class constructor, which includes all available robot control
Description interfaces. The robot must be initialized and connected before other functions can

be used.

controllerlP : string Robot controller IP address

teachPanellP : string Optional teach pendant IP; falls back to controllerlP when

omitted
Request . .
localProxy : bool Whether to use local controller proxy service, default is true.
Parameters))
When true, launches controller proxy service locally; when false, requires proxy
service to be already installed in robot controller (requires robot software version
7.7 or later).
Return Value StatusCode: Result of function execution
Compatible robot Collaborative (Copper): v7.5.0.0+
software version Industrial (Bronze): v7.5.0.0+

4.1.1 Connecting to the Robot

Method Name ConnectSync()

Establishes network connection with the Agilebot robot. The Arm

Description) o)
constructor must be called first to initialize the robot instance.

Request Parameters None

Return Value StatusCode: Result of function execution

Compatible robot Collaborative (Copper): v7.5.0.0+

software version Industrial (Bronze): v7.5.0.0+

4.1.2 Checking the Connection with the Robot Arm

Copyright © 2026-present Agilebot Robotics Co., Ltd. 52 /283

Method Name
Description

Request Parameters

Return Value

Compatible robot

software version

4.1 Basic Operations of the Robot | Agilebot Robot SDK

IsConnected()

Checks whether the network connection with the robot is valid.

None

bool: Connection status, true indicates connection is valid, false indicates

connection is invalid or not connected

Collaborative (Copper): v7.5.0.0+
Industrial (Bronze): v7.5.0.0+

4.1.3 Disconnecting from the Robot

Method Name

Description

Request Parameters
Return Value

Compatible robot software

version

Example Code

Arm/Connect.cs

using Agilebot.IR;

public class Connect

{

DisconnectSync()

Disconnects from the Agilebot robot and releases related

resources.
None
StatusCode: Result of function execution

Collaborative (Copper): v7.5.0.0+
Industrial (Bronze): v7.5.0.0+

cs

public static StatusCode Run(

string controllerIP,

bool uselLocalProxy = true

/] [ZH] WasfesEshFsplas A

Copyright © 2026-present Agilebot Robotics Co., Ltd.

53/283

4.1 Basic Operations of the Robot | Agilebot Robot SDK

// [EN] Initialize the Agilebot robot
Arm controller = new Arm(
controllerIP,

useLocalProxy

);

// [ZH] EZFFEDRDLE A

// [EN] Connect to the Agilebot robot
StatusCode code = controller.ConnectSync();
if (code != StatusCode.OK)

{
Console.WritelLine(
"Connect Robot Failed: "
+ code.GetDescription()
)s
return code;
}
try
{
// [ZH] teEEREIRE
// [EN] Check the connection status
var state = controller.IsConnected();
Console.WriteLine("Connected: " + state);
}
catch (Exception ex)
{
Console.WritelLine(
$"PATIERE K /Exception occurred during execution: {ex.Messag
e}ll
)s
code = StatusCode.OtherReason;
}
finally
{

/] [ZH] KMER

// [EN] Close the connection

StatusCode disconnectCode =
controller.Disconnect();

if (disconnectCode != StatusCode.OK)

{

Console.WritelLine(

Copyright © 2026-present Agilebot Robotics Co., Ltd. 54 /283

4.1 Basic Operations of the Robot | Agilebot Robot SDK

disconnectCode.GetDescription()
)s
if (code == StatusCode.OK)

code = disconnectCode;

return code;

4.1.4 Getting the Current Robot Model

Method Name GetArmModelinfo()

o Gets the model information of the currently connected Agilebot
Description bot
robot.

Request Parameters None

string: Robot model string, e.g., "GBT-C5A"
Return Value
StatusCode: Result of function execution

Compatible robot software Collaborative (Copper): v7.5.0.0+

version Industrial (Bronze): v7.5.0.0+

Example Code

Arm/GetArmModelinfo.cs

cs
using Agilebot.IR;

public class GetArmModelInfo

{
public static StatusCode Run(

string controllerlIP,

bool uselocalProxy = true

Copyright © 2026-present Agilebot Robotics Co., Ltd. 55/283

4.1 Basic Operations of the Robot | Agilebot Robot SDK

/1 [ZH] Wl HsEh s plas A

// [EN] Initialize the Agilebot robot

Arm controller = new Arm(
controllerIP,

useLocalProxy

);

/1 [ZH] EEZFITEDFHLAEA

// [EN] Connect to the Agilebot robot
StatusCode code = controller.ConnectSync();
if (code != StatusCode.OK)

{
Console.WritelLine(
"Connect Robot Failed: "
+ code.GetDescription()
)s
return code;
}
try
{
/7 [ZH] KRB AN SER
// [EN] Get the robot model information
(string info, code) =
controller.GetArmModelInfo();
if (code != StatusCode.OK)
{
Console.WritelLine(
"Get Robot Model Failed: "
+ code.GetDescription()
)s
}
else
{
Console.WriteLine("Model: " + info);
}
¥
catch (Exception ex)
{
Console.WriteLine(

$"PATIEFE R K A /Exception occurred during execution: {ex.Messag

Copyright © 2026-present Agilebot Robotics Co., Ltd. 56 /283

4.1 Basic Operations of the Robot | Agilebot Robot SDK

e}"”
)s
code = StatusCode.OtherReason;
}
finally
{
/] [ZH] KRMEEZ
// [EN] Close the connection
StatusCode disconnectCode =
controller.Disconnect();
if (disconnectCode != StatusCode.OK)
{
Console.WritelLine(
disconnectCode.GetDescription()
)s
if (code == StatusCode.OK)
code = disconnectCode;
}
}
return code;
}
}

4.1.5 Getting the Robot's Operating State

Method Name GetRobotState()
Description Gets the current operating state of the Agilebot robot.
Request Parameters None

RobotState: Robot operating state enum value
Return Value . .
StatusCode: Result of function execution

Collaborative (Copper): v7.5.0.0+

Compatible robot software version]
Industrial (Bronze): v7.5.0.0+

Example Code

Copyright © 2026-present Agilebot Robotics Co., Ltd. 571283

4.1 Basic Operations of the Robot | Agilebot Robot SDK

Arm/GetRobotState.cs

using Agilebot.IR;
using Agilebot.IR.Types;

public class GetRobotState
{
public static StatusCode Run(
string controllerIP,

bool uselocalProxy = true

/1 [ZH] W HTE LS A

// [EN] Initialize the Agilebot robot

Arm controller = new Arm(
controllerIP,

useLocalProxy

)5

[/ [ZH] EEFEDRNLASEA
// [EN] Connect to the Agilebot robot
StatusCode code = controller.ConnectSync();

if (code != StatusCode.OK)

{

Console.WriteLine(

"Connect Robot Failed: "
+ code.GetDescription()

)s

return code;
}
try
{

// [ZH] FRELE N TR
// [EN] Get the robot running state
(RobotState state, code) =
controller.GetRobotState();
if (code != StatusCode.OK)
{
Console.WriteLine(
"Get RobotState Failed: "

Copyright © 2026-present Agilebot Robotics Co., Ltd.

cs

58 /283

4.1 Basic Operations of the Robot | Agilebot Robot SDK

+ code.GetDescription()

)s
}
else
{
Console.WriteLine("RobotState: " + state);
}
}
catch (Exception ex)
{
Console.WritelLine(
$" P AT R K E 5% /Exception occurred during execution: {ex.Messag
e}”
)5
code = StatusCode.OtherReason;
}
finally
{
[/ [ZH] KPAER
// [EN] Close the connection
StatusCode disconnectCode =
controller.Disconnect();
if (disconnectCode != StatusCode.OK)
{
Console.WritelLine(
disconnectCode.GetDescription()
)3
if (code == StatusCode.OK)
code = disconnectCode;
}
}
return code;
}
}

4.1.6 Getting the Current Controller Operating State

Copyright © 2026-present Agilebot Robotics Co., Ltd.

59 /283

4.1 Basic Operations of the Robot | Agilebot Robot SDK

Method Name GetCtriState()
Description Gets the current operating state of the Agilebot robot controller.
Request Parameters None

CtriState: Controller operating state enum value
Return Value .)
StatusCode: Result of function execution

Collaborative (Copper): v7.5.0.0+

Compatible robot software version]
Industrial (Bronze): v7.5.0.0+

Example Code

Arm/GetCtrlState.cs

cs
using Agilebot.IR;

using Agilebot.IR.Types;

public class GetCtrlState
{
public static StatusCode Run(
string controllerIP,

bool uselLocalProxy = true

/1 [ZH] Wl sEh R plas A

// [EN] Initialize the Agilebot robot

Arm controller = new Arm(
controllerIP,

useLocalProxy

);

// [ZH] EEEDRPLASA
// [EN] Connect to the Agilebot robot
StatusCode code = controller.ConnectSync();
if (code != StatusCode.OK)
{
Console.WritelLine(
"Connect Robot Failed: "

+ code.GetDescription()

Copyright © 2026-present Agilebot Robotics Co., Ltd. 60/ 283

4.1 Basic Operations of the Robot | Agilebot Robot SDK

)s
return code;
}
try
{
/1 [ZH] FRBEEH SIS TRE
// [EN] Get the controller running state
(CtrlState state, code) =
controller.GetCtrlState();
if (code != StatusCode.OK)
{
Console.WritelLine(
"Get CtrlState Failed: "
+ code.GetDescription()
)s
}
else
{
Console.WriteLine("CtrlState: " + state);
}
}
catch (Exception ex)
{
Console.WritelLine(
$" PATIERE R K 4 % /Exception occurred during execution: {ex.Messag
e}"
)3
code = StatusCode.OtherReason;
}
finally
{

/] [ZH] RHERE

// [EN] Close the connection

StatusCode disconnectCode =
controller.Disconnect();

if (disconnectCode != StatusCode.OK)

{
Console.WritelLine(

disconnectCode.GetDescription()

)s
if (code == StatusCode.OK)

Copyright © 2026-present Agilebot Robotics Co., Ltd. 61/283

4.1 Basic Operations of the Robot | Agilebot Robot SDK

code = disconnectCode;

return code;

4.1.7 Getting the Current Servo State

Method Name GetServoState()
Description Gets the current state of the Agilebot robot servo system.
Request Parameters None

ServoState: Servo system state enum value
Return Value

StatusCode: Result of function execution

Collaborative (Copper): v7.5.0.0+

Compatible robot software version]
Industrial (Bronze): v7.5.0.0+

Example Code

Arm/GetServoState.cs

cs
using Agilebot.IR;

using Agilebot.IR.Types;

public class GetServoState

{
public static StatusCode Run(

string controllerlIP,

bool uselLocalProxy = true

// [ZH] WIEEATEZRLEE A
// [EN] Initialize the Agilebot robot

Copyright © 2026-present Agilebot Robotics Co., Ltd. 62 /283

4.1 Basic Operations of the Robot | Agilebot Robot SDK

Arm controller = new Arm(
controllerIP,

useLocalProxy

);

/1 [ZH] EEEFEDRILAE A

// [EN] Connect to the Agilebot robot
StatusCode code = controller.ConnectSync();
if (code != StatusCode.OK)

{
Console.WritelLine(
"Connect Robot Failed: "
+ code.GetDescription()
)5
return code;
}
try
{
// [ZH] FREBURARZATIRES
// [EN] Get the servo operating state
(ServoState state, code) =
controller.GetServoState();
if (code != StatusCode.OK)
{
Console.WritelLine(
"Get ServoState Failed: "
+ code.GetDescription()
)3
}
else
{
Console.WriteLine("ServoState: " + state);
}
}
catch (Exception ex)
{
Console.WritelLine(
$"PATIEFE R K A /Exception occurred during execution: {ex.Messag
e}”
)s

code = StatusCode.OtherReason;

Copyright © 2026-present Agilebot Robotics Co., Ltd. 63 /283

4.1 Basic Operations of the Robot | Agilebot Robot SDK

}
finally
{
/] [ZH] KRMEEZ
// [EN] Close the connection
StatusCode disconnectCode =
controller.Disconnect();
if (disconnectCode != StatusCode.OK)
{
Console.WritelLine(
disconnectCode.GetDescription()
)s
if (code == StatusCode.OK)
code = disconnectCode;
}
}

return code;

4.1.8 Getting the Robot Controller Version

Method Name GetVersion()

o Gets the software version information of the Agilebot robot
Description
controller.

Request Parameters None

string: Controller software version string
Return Value _ .
StatusCode: Result of function execution

Compatible robot software Collaborative (Copper): v7.5.0.0+

version Industrial (Bronze): v7.5.0.0+

Example Code

Copyright © 2026-present Agilebot Robotics Co., Ltd. 64 / 283

4.1 Basic Operations of the Robot | Agilebot Robot SDK

Arm/GetVersion.cs

using Agilebot.IR;

public class GetVersion
{
public static StatusCode Run(
string controllerIP,

bool uselocalProxy = true

/1 [ZH] W HTE LS A

// [EN] Initialize the Agilebot robot

Arm controller = new Arm(
controllerIP,

useLocalProxy

)5

[/ [ZH] EEFEDRHLAE A
// [EN] Connect to the Agilebot robot
StatusCode code = controller.ConnectSync();

if (code != StatusCode.OK)

{

Console.WriteLine(

"Connect Robot Failed: "
+ code.GetDescription()

)s

return code;
}
try
{

/] [ZH] FREUHLES ATl 8 hiAs

// [EN] Get the robot controller version
string version;

(version, code) = controller.GetVersion();
if (code != StatusCode.OK)

{

Console.WriteLine(

"Get version Failed:

+ code.GetDescription()

Copyright © 2026-present Agilebot Robotics Co., Ltd.

cs

65 /283

4.1 Basic Operations of the Robot | Agilebot Robot SDK

)s
}
else
{
Console.WriteLine("Version: " + version);
}
}
catch (Exception ex)
{
Console.WritelLine(
$ AT G R A4 SRR /Exception occurred during execution: {ex.Messag
e}”
)s
code = StatusCode.OtherReason;
}
finally
{
/] [ZH] RKHAZER
// [EN] Close the connection
StatusCode disconnectCode =
controller.Disconnect();
if (disconnectCode != StatusCode.OK)
{
Console.WritelLine(
disconnectCode.GetDescription()
)3
if (code == StatusCode.OK)
code = disconnectCode;
}
}
return code;
}
}

4.1.9 Setting the Robot's LED Indicator Light

Copyright © 2026-present Agilebot Robotics Co., Ltd. 66 / 283

Method Name

Description

Request Parameters

Return Value

Compatibility

Compatible robot

software version

Example Code

Arm/SwitchLedLight.cs

using Agilebot.IR;

4.1 Basic Operations of the Robot | Agilebot Robot SDK

SwitchLedLight(bool mode)
Controls the on/off state of the Agilebot robot LED indicator light.

mode : bool LED indicator light control mode, true indicates turn on,

false indicates turn off
StatusCode: Operation execution result

Only supports collaborative robots, requires controller version 1.3.6 and

above, industrial robots not supported

Collaborative (Copper): v7.5.1.3+

Industrial (Bronze): Not supported

public class SwitchlLedLight

{

public static StatusCode Run(

string controllerIP,

bool uselocalProxy = true

// [ZH] WA TEZRLEE A
// [EN] Initialize the Agilebot robot

Arm controller

new Arm(

controllerIP,

uselLocalProxy

)5

/] [ZH] ZEEFEIFILEEA
// [EN] Connect to the Agilebot robot

StatusCode code

= controller.ConnectSync();

if (code != StatusCode.OK)

{

Console.WritelLine(

Copyright © 2026-present Agilebot Robotics Co., Ltd.

"Connect Robot Failed: "

cs

67 /283

4.1 Basic Operations of the Robot | Agilebot Robot SDK

+ code.GetDescription()
)s

return code;

try

// [ZH] KHATE

// [EN] Turn off the LED light

code = controller.SwitchLedLight(false);
if (code != StatusCode.OK)

{

Console.WritelLine(
"Switch Led Failed: "

+ code.GetDescription()

)5

else

Console.WritelLine("Switch Led Light Off.");

Thread.Sleep(2000);

// [ZH] FTHFATOE

// [EN] Turn on the LED light

code = controller.SwitchLedLight(true);
if (code != StatusCode.OK)

{

Console.WritelLine(
"Switch Led Failed: "

+ code.GetDescription()

DE

else

Console.WriteLine("Switch Led Light On.");

}

catch (Exception ex)

{

Console.WritelLine(

Copyright © 2026-present Agilebot Robotics Co., Ltd. 68 /283

4.1 Basic Operations of the Robot | Agilebot Robot SDK

$"PATIEFE R A 7R /Exception occurred during execution: {ex.Messag

e}"”
)s
code = StatusCode.OtherReason;
}
finally
{
/] [ZH] KRMEEZ
// [EN] Disconnect from the robot
StatusCode disconnectCode =
controller.Disconnect();
if (disconnectCode != StatusCode.OK)
{
Console.WriteLine(
disconnectCode.GetDescription()
)s
if (code == StatusCode.OK)
code = disconnectCode;
}
}
return code;
}
}

4.1.10 Robot Servo On

Method Name ServoOn()

Starts the servo system of the Agilebot robot, making the robot enter a

Description
controllable state.
Request Parameters None
Return Value StatusCode: Result of function execution
Compatible robot software Collaborative (Copper): v7.5.0.0+
version Industrial (Bronze): v7.5.0.0+

Copyright © 2026-present Agilebot Robotics Co., Ltd. 69 /283

4.1 Basic Operations of the Robot | Agilebot Robot SDK

4.1.11 Robot Servo Off

Method Name ServoOff()

Turns off the servo system of the Agilebot robot, making the robot

Description
enter a safe stop state.
Request Parameters None
Return Value StatusCode: Result of function execution
Compatible robot software Collaborative (Copper): v7.5.0.0+
version Industrial (Bronze): v7.5.0.0+

4.1.12 Resetting the Robot Servo

Method Name ServoReset()

Resets the servo system of the Agilebot robot, clearing error states and

Description)
preparing for restart.
Request Parameters None
Return Value StatusCode: Result of function execution
Compatible robot software Collaborative (Copper): v7.5.0.0+
version Industrial (Bronze): v7.5.0.0+

Example Code

Arm/ServoOperation.cs

cs
using Agilebot.IR;

public class ServoOperation

{
public static StatusCode Run(

string controllerIP,

Copyright © 2026-present Agilebot Robotics Co., Ltd. 70/ 283

4.1 Basic Operations of the Robot | Agilebot Robot SDK

bool uselLocalProxy = true

/1 [ZH] WIasesEh s plas A

// [EN] Initialize the Agilebot robot

Arm controller = new Arm(
controllerIP,

useLocalProxy

)s

/1 [ZH] BEESEFLEA

// [EN] Connect to the Agilebot robot
StatusCode code = controller.ConnectSync();
if (code != StatusCode.OK)

{

Console.WritelLine(

"Connect Robot Failed: "
+ code.GetDescription()

)

return code;
}
try
{

// [ZH] B] ik 2 &
// [EN] Reset the robot arm servo
code = controller.ServoReset();

if (code != StatusCode.OK)

{

Console.WritelLine(

"Servo Reset Failed: "
+ code.GetDescription()

)s
}
else
{

Console.WriteLine("Servo Reset Success.");
¥
Thread.Sleep(3000);

/7 [ZH] WU Al Aok o

Copyright © 2026-present Agilebot Robotics Co., Ltd. 7117283

4.1 Basic Operations of the Robot | Agilebot Robot SDK

// [EN] Turn off the robot arm servo
code = controller.ServoOff();

if (code != StatusCode.OK)

{

Console.WritelLine(

"Servo Off Failed: "
+ code.GetDescription()

)
¥
else
{

Console.WriteLine("Servo Off Success.");
¥
Thread.Sleep(3000);

// [ZH] WL R RT IF
// [EN] Turn on the robot arm servo
code = controller.ServoOn();

if (code != StatusCode.OK)

{
Console.WritelLine(
"Servo On Failed: "
+ code.GetDescription()
)s
}
else
{
Console.WriteLine("Servo On Success.");
}
Thread.Sleep(3000);
}
catch (Exception ex)
{
Console.WriteLine(
$" AT FE R K A 5 /Exception occurred during execution: {ex.Messag
e}ll
)s
code = StatusCode.OtherReason;
}
finally

Copyright © 2026-present Agilebot Robotics Co., Ltd. 721283

4.1 Basic Operations of the Robot | Agilebot Robot SDK

{
/] [ZH] KRMEE
// [EN] Close the connection
StatusCode disconnectCode =
controller.Disconnect();
if (disconnectCode != StatusCode.OK)
{
Console.WritelLine(
disconnectCode.GetDescription()
)s
if (code == StatusCode.OK)
code = disconnectCode;
}
}

return code;

4.1.13 Emergency Stop

Method Name Estop()

Executes emergency stop of the Agilebot robot, immediately stopping all

Description))
motion and entering a safe state.
Request Parameters None
Return Value StatusCode: Emergency stop operation execution result
Compatible robot Collaborative (Copper): v7.5.0.0+
software version Industrial (Bronze): v7.5.0.0+

Example Code

Arm/Estop.cs

Copyright © 2026-present Agilebot Robotics Co., Ltd. 731283

4.1 Basic Operations of the Robot | Agilebot Robot SDK

Ccs
using Agilebot.IR;

public class Estop

{
public static StatusCode Run(

string controllerIP,

bool uselocalProxy = true

/1 [ZH] W HTE AL A

// [EN] Initialize the Agilebot robot

Arm controller = new Arm(
controllerIP,

useLocalProxy

)5

[/ [ZH] EEZFEZRALSE A
// [EN] Connect to the Agilebot robot
StatusCode code = controller.ConnectSync();

if (code != StatusCode.OK)

{

Console.WriteLine(

"Connect Robot Failed: "
+ code.GetDescription()

)s

return code;
}
try
{

/7 [ZH] flRNLEE N 2s

// [EN] Trigger the robot emergency stop
code = controller.Estop();

if (code != StatusCode.OK)

{
Console.WriteLine(
"Emergency Stop Failed: "
+ code.GetDescription()
)s
}
else

Copyright © 2026-present Agilebot Robotics Co., Ltd. 74 | 283

4.1 Basic Operations of the Robot | Agilebot Robot SDK

{
Console.WritelLine("Emergency Stop Success");
}
}
catch (Exception ex)
{
Console.WritelLine(
$ AT IR T R A 7R /Exception occurred during execution: {ex.Messag
e}”
)s
code = StatusCode.OtherReason;
}
finally
{
/] [ZH] RKAER
// [EN] Close the connection
StatusCode disconnectCode =
controller.Disconnect();
if (disconnectCode != StatusCode.OK)
{
Console.WritelLine(
disconnectCode.GetDescription()
)3
if (code == StatusCode.OK)
code = disconnectCode;
}
}
return code;
}
}

Copyright © 2026-present Agilebot Robotics Co., Ltd. 751283

4.2 Robot Motion Control and Status | Agilebot Robot SDK

4.2 Robot Motion Control and Status

4.2.1 Getting Robot Parameters

4.2.1.1 Getting OVC Overall Velocity Coefficient

Method Name Motion.GetOVC()

Gets the current robot's OVC (Overall Velocity Control) global velocity

Description o
ratio, with a range of 0~1.

Request Parameters None

double: Global velocity ratio value
Return Value .)
StatusCode: Result of function execution

Compatible robot software Collaborative (Copper): v7.5.0.0+

version Industrial (Bronze): v7.5.0.0+

4.2.1.2 Getting OAC Overall Acceleration Coefficient

Method Name Motion.GetOAC()

o Gets the current robot's OAC (Overall Acceleration Control) global
Description)))
acceleration ratio, with a range of 0~1.2.

Request Parameters None

double: Global acceleration ratio value
Return Value))
StatusCode: Result of function execution

Compatible robot Collaborative (Copper): v7.5.0.0+

software version Industrial (Bronze): v7.5.0.0+

4.2.1.3 Getting the Current TF

Copyright © 2026-present Agilebot Robotics Co., Ltd. 76 /283

4.2 Robot Motion Control and Status | Agilebot Robot SDK

Method Name Motion.GetTF()

o Gets the current TF (Tool Frame) tool coordinate system index used by
Description)
the robot, with a range of 0~10.

Request Parameters None

int: TF tool coordinate system index
Return Value))
StatusCode: Result of function execution

Compatible robot software Collaborative (Copper): v7.5.0.0+

version Industrial (Bronze): v7.5.0.0+

4.2.1.4 Getting the Current UF

Method Name Motion.GetUF()

o Gets the current UF (User Frame) user coordinate system index used by
Description)
the robot, with a range of 0~10.

Request Parameters None

int: UF user coordinate system index
Return Value . .
StatusCode: Result of function execution

Compatible robot Collaborative (Copper): v7.5.0.0+

software version Industrial (Bronze): v7.5.0.0+

4.2.1.5 Getting the Current TCS Teaching Coordinate System

Method Name Motion.GetTCS()

Descrint Gets the current TCS (Teach Coordinate System) teaching coordinate system
escription
P type used by the robot, see TCSType for details.

Request Parameters None

TCSType: TCS teaching coordinate system type enum value
Return Value i)
StatusCode: Result of function execution

Compatible robot Collaborative (Copper): v7.5.0.0+

software version Industrial (Bronze): v7.5.0.0+

Copyright © 2026-present Agilebot Robotics Co., Ltd. 771283

4.2 Robot Motion Control and Status | Agilebot Robot SDK

Example Code

Motion/GetMotionParameters.cs

using Agilebot.IR;
using Agilebot.IR.Types;

public class GetMotionParameters
{
public static StatusCode Run(
string controllerIP,

bool uselocalProxy = true

/7 [ZH] WIIRHEERRAALES A

// [EN] Initialize the Agilebot robot

Arm controller = new Arm(
controllerIP,

uselLocalProxy

)5

/7 [ZH] EFZFEDRHLEGA
// [EN] Connect to the Agilebot robot
StatusCode code = controller.ConnectSync();
Console.WriteLine(

code != StatusCode.OK

? code.GetDescription()
: "IERERIN/Successfully connected. "

g

if (code != StatusCode.OK)
{

return code;

try

// [ZH] 3KHL ovC 4Rl Lh
// [EN] Get OVC global speed ratio
double ovc;

(ovc, code) = controller.Motion.GetOVC();

Copyright © 2026-present Agilebot Robotics Co., Ltd.

cs

781283

4.2 Robot Motion Control and Status | Agilebot Robot SDK

if (code == StatusCode.OK)

{
Console.WritelLine($"0OVC = {ovc}");
}
else
{
Console.WritelLine(
$"FREXOVCKIK : {code.GetDescription()}"
)5
}

// [ZH] 3REL OAC &)= hniE i Lk &

// [EN] Get OAC global acceleration ratio
double oac;

(oac, code) = controller.Motion.GetOAC();
if (code == StatusCode.OK)

{
Console.WriteLine($"0AC = {oac}");
}
else
{
Console.WritelLine(
$"FKELOACKI : {code.GetDescription()}"
)3
}

// [ZH] FREBCHRTEHE TF

// [EN] Get current TF (Tool Frame)

int tf;

(tf, code) = controller.Motion.GetTF();
if (code == StatusCode.OK)

{
Console.WriteLine($"TF = {tf}");
}
else
{
Console.WritelLine(
$"FREXTFM : {code.GetDescription()}"
)s
}

// [ZH] FRECEHAfEK UF

Copyright © 2026-present Agilebot Robotics Co., Ltd. 791283

4.2 Robot Motion Control and Status | Agilebot Robot SDK

// [EN] Get current UF (User Frame)

int uf;

(uf, code) = controller.Motion.GetUF();
if (code == StatusCode.OK)

{
Console.WritelLine($"UF = {uf}");
}
else
{
Console.WritelLine(
$"FRELUF KK : {code.GetDescription()}"
)s
}

// [ZH] FRECEHHTEEAIE) TCS /REkbR &

// [EN] Get current TCS teaching coordinate system
TCSType tcs;

(tcs, code) = controller.Motion.GetTCS();

if (code == StatusCode.OK)

{
Console.WritelLine($"TCSType = {tcs}");
}
else
{
Console.WritelLine(
$"FKELTCSKIM: {code.GetDescription()}"
)3
}

/7 [ZH] SREHLES NERBR AL
// [EN] Get robot soft limits
List<List<double>> softLimit;
(softLimit, code) =
controller.Motion.GetUserSoftLimit();
if (code == StatusCode.OK)
{
Console.WriteLine("#K[RAI(EHE:");
for (int i = @; i < softLimit.Count; i++)
{
Console.WritelLine(
$"fh{i + 1}: TIR={softLimit[i][@]}, LPR={softLimit[i][1]}"
)s

Copyright © 2026-present Agilebot Robotics Co., Ltd. 80/ 283

4.2 Robot Motion Control and Status | Agilebot Robot SDK

}
}
else
{
Console.WritelLine(
$"IREUAKPRAL R : {code.GetDescription()}"
)s
}
}
catch (Exception ex)
{
Console.WritelLine(
$" P AT R K E 5% /Exception occurred during execution: {ex.Messag
e}”
)5
code = StatusCode.OtherReason;
}
finally
{
[/ [ZH] KPAER
// [EN] Close the connection
StatusCode disconnectCode =
controller.Disconnect();
Console.WriteLine(
disconnectCode != StatusCode.OK
? disconnectCode.GetDescription()
"Successfully disconnected."
)3
}
return code;
}
}

4.2.2 Setting Robot Parameters

4.2.2.1 Setting OVC Overall Velocity Coefficient

Copyright © 2026-present Agilebot Robotics Co., Ltd. 81/283

4.2 Robot Motion Control and Status | Agilebot Robot SDK

Method Name

Description

Request Parameters
Return Value

Compatible robot software

version

Motion.SetOVC(double value)

Sets the current robot's OVC (Overall Velocity Control) global

velocity ratio.
value :double velocity ratio, range 0~1
StatusCode: Result of function execution

Collaborative (Copper): v7.5.0.0+
Industrial (Bronze): v7.5.0.0+

4.2.2.2 Setting OAC Overall Acceleration Coefficient

Method Name

Description

Request Parameters
Return Value

Compatible robot software

version

Motion.SetOAC(double value)

Sets the current robot's OAC (Overall Acceleration Control) global

acceleration ratio.
value :double acceleration ratio, range 0~1.2
StatusCode: Result of function execution

Collaborative (Copper): v7.5.0.0+
Industrial (Bronze): v7.5.0.0+

4.2.2.3 Setting the Current TF Tool Coordinate System Index

Method Name
Description
Request Parameters

Return Value

Compatible robot software version

Motion.SetTF(int value)

Sets the current TF (Tool Frame) tool coordinate system index.

value :int TF index, range 0~10
StatusCode: Result of function execution

Collaborative (Copper): v7.5.0.0+
Industrial (Bronze): v7.5.0.0+

4.2.2.4 Setting the Current UF User Coordinate System Index

Copyright © 2026-present Agilebot Robotics Co., Ltd.

82 /283

Method Name

Description

Request Parameters

Return Value

4.2 Robot Motion Control and Status | Agilebot Robot SDK

Motion.SetUF(int value)

Sets the current UF (User Frame) user coordinate system index.
value :int UF index, range 0~10

StatusCode: Result of function execution

Collaborative (Copper): v7.5.0.0+

Compatible robot software version

Industrial (Bronze): v7.5.0.0+

4.2.2.5 Setting the Current TCS Teaching Coordinate System

Method Name

Description

Request Parameters
Return Value

Compatible robot software

version

Example Code

Motion.SetTCS(TCSType value)

Sets the current TCS (Teach Coordinate System) teaching coordinate

system.
value : TCSType TCS teaching coordinate system type
StatusCode: Result of function execution

Collaborative (Copper): v7.5.0.0+
Industrial (Bronze): v7.5.0.0+

Motion/SetMotionParameters.cs

using Agilebot.IR;
using Agilebot.IR.Types;

public class SetMotionParameters

{

public static StatusCode Run(

string controllerlIP,

bool uselocalProxy = true

// [ZH] WIEEATES RIS A
// [EN] Initialize the Agilebot robot

Copyright © 2026-present Agilebot Robotics Co., Ltd.

cs

83/283

4.2 Robot Motion Control and Status | Agilebot Robot SDK

Arm controller = new Arm(
controllerIP,

useLocalProxy

);

// [ZH] EEEDRPLASA
// [EN] Connect to the Agilebot robot
StatusCode code = controller.ConnectSync();
Console.WritelLine(
code != StatusCode.OK
? code.GetDescription()
: "HEEBERLY)/Successfully connected. ™

)s

if (code != StatusCode.OK)
{

return code;

try

// [ZH] W& ovC & JRHEFLHR

// [EN] Set 0OVC global speed ratio
code = controller.Motion.SetOVC(0.5);
if (code == StatusCode.OK)

{
Console.WriteLine(" & EOVCHIN");
¥
else
{
Console.WritelLine(
$"BEOVCRW : {code.GetDescription()}"
)s
}

// [ZH] WE OAC A JRlniE i b2

// [EN] Set OAC global acceleration ratio
code = controller.Motion.SetOAC(0.8);

if (code == StatusCode.OK)

{
Console.WritelLine (" ¥ &OACHKIL");

Copyright © 2026-present Agilebot Robotics Co., Ltd. 84 /283

4.2 Robot Motion Control and Status | Agilebot Robot SDK

else

Console.WritelLine(
$" W EOACKM : {code.GetDescription()}"

)5

// [ZH] WELHIEHK TF H R R %05

// [EN] Set current TF (Tool Frame) user coordinate system number
code = controller.Motion.SetTF(2);

if (code == StatusCode.OK)

{
Console.WriteLine ("R ETFRII");
¥
else
{
Console.WriteLine(
$" B BTFRM : {code.GetDescription()}"
)s
¥

// [ZH] WE LA UF THEAR RS

// [EN] Set current UF (User Frame) tool coordinate system number
code = controller.Motion.SetUF(1);

if (code == StatusCode.OK)

{
Console.WriteLine(" & BEUFIN");
¥
else
{
Console.WritelLine(
$" W BUFRI: {code.GetDescription()}"
)3
}

// [ZH] WESHMEHK TCS RARIR &

// [EN] Set current TCS teaching coordinate system
code = controller.Motion.SetTCS(TCSType.TOOL);

if (code == StatusCode.OK)

{
Console.WriteLine(" W ETCSHIL");

Copyright © 2026-present Agilebot Robotics Co., Ltd. 85/ 283

4.2 Robot Motion Control and Status | Agilebot Robot SDK

else

Console.WritelLine(
$" B ETCS KM : {code.GetDescription()}"
)s

// [ZH] ¥ EUDPAHL & I RS 4
// [EN] Set UDP position control related parameters
code =

controller.Motion.SetPositionTrajectoryParams(

10,
20,
10,
10
)s
if (code == StatusCode.OK)
{
Console.WriteLine(" & BN BIEHISE L") ;
¥
else
{
Console.WritelLine(
$"WEMEBEEHSH LW {code.GetDescription()}"
)s
}
}
catch (Exception ex)
{
Console.WriteLine(
$"PATIERE R R /Exception occurred during execution: {ex.Messag
e}ll
)s
code = StatusCode.OtherReason;
}
finally
{

/] [ZH] KRMEE

// [EN] Close the connection

StatusCode disconnectCode =
controller.Disconnect();

Console.WritelLine(

Copyright © 2026-present Agilebot Robotics Co., Ltd. 86 /283

4.2 Robot Motion Control and Status | Agilebot Robot SDK

disconnectCode != StatusCode.OK
? disconnectCode.GetDescription()

"Successfully disconnected."”

);

return code;

4.2.3 Converting Cartesian Position to Joint Values

Motion.ConvertCartToJoint(MotionPose pose , int uflndex =0, int
tfindex =0)

Method Name

Description Converts pose data from Cartesian coordinates to joint coordinates.

pose : MotionPose Robot pose data
Request Parameters uflndex :int User coordinate system index, default is 0

tfindex :int Tool coordinate system index, default is O

MotionPose: Converted robot pose data
Return Value)))
StatusCode: Conversion operation execution result

Compatible robot software Collaborative (Copper): v7.5.0.0+

version Industrial (Bronze): v7.5.0.0+

Example Code

Motion/ConvertCartToJoint.cs

cs
using Agilebot.IR;

using Agilebot.IR.Motion;
using Agilebot.IR.Types;

public class ConvertCartToJoint

{
public static StatusCode Run(

Copyright © 2026-present Agilebot Robotics Co., Ltd. 871283

4.2 Robot Motion Control and Status | Agilebot Robot SDK

string controllerlIP,

bool uselLocalProxy = true

/1 [ZH] WIasesEh s plas A

// [EN] Initialize the Agilebot robot

Arm controller = new Arm(
controllerIP,

useLocalProxy

)s

/1 [ZH] BEESEFLEA
// [EN] Connect to the Agilebot robot
StatusCode code = controller.ConnectSync();
Console.WritelLine(
code != StatusCode.OK

? code.GetDescription()

: "HEERERLY)/Successfully connected. ™
)

if (code != StatusCode.OK)
{

return code;

try

// [ZH] B RI/RALZE

// [EN] Create Cartesian pose

MotionPose motionPose = new MotionPose();
motionPose.Pt = PoseType.Cart;

motionPose.CartData.Position = new Position

{
X = 300,
Y = 300,
Z = 300,
A =0,
B =0,
c=o0,
}s
motionPose.CartData.Posture = new Posture
{

Copyright © 2026-present Agilebot Robotics Co., Ltd. 88 /283

4.2 Robot Motion Control and Status | Agilebot Robot SDK

WristFlip

1,
1,
ArmBackFront = 1,
ArmLeftRight dbg

ArmUpDown

TurnCircle = new List<int>(9)

{

- - -

-

- -

-

® ®© ®© ®© 0 O & &0 ©&
-

-

o
};

/7 [ZH] B RIR AL W o T 8 R AL
// [EN] Convert Cartesian pose to joint pose
MotionPose convertPose;
(convertPose, code) =
controller.Motion.ConvertCartToJoint(
motionPose
)s
if (code == StatusCode.OK)
{
Console.WriteLine("H R/RERTHKII:");
Console.WriteLine(
$"KTiME: J1={convertPose.Joint.J1}, J2={convertPose.Joint.J2},
J3={convertPose.Joint.J3}, J4={convertPose.Joint.J4}, J5={convertPose.Joint.J5}, J6

={convertPose.Joint.J6}"

)s
}
else
{
Console.WritelLine(
$"HERRERTI R : {code.GetDescription()}"
)
}

}

catch (Exception ex)

Copyright © 2026-present Agilebot Robotics Co., Ltd. 89 /283

4.2 Robot Motion Control and Status | Agilebot Robot SDK

{
Console.WritelLine(
$"PATIERE T R E 7 /Exception occurred during execution: {ex.Messag
e}”
)s
code = StatusCode.OtherReason;
}
finally
{
/] [ZH] KPS
// [EN] Close the connection
StatusCode disconnectCode =
controller.Disconnect();
Console.WritelLine(
disconnectCode != StatusCode.OK
? disconnectCode.GetDescription()
"Successfully disconnected."”
)5
}
return code;
}
}

4.2.4 Converting Joint Values to Cartesian Position

Motion.ConvertJointToCart(MotionPose pose , int uflndex =0, int

Method Name
tfindex =0)

Description Converts pose data from joint coordinates to Cartesian coordinates.

pose : MotionPose Robot pose data
Request Parameters uflndex :int User coordinate system index, default is O

tfindex :int Tool coordinate system index, default is O

MotionPose: Converted robot pose data
Return Value . . .
StatusCode: Conversion operation execution result

Copyright © 2026-present Agilebot Robotics Co., Ltd.

90 /283

4.2 Robot Motion Control and Status | Agilebot Robot SDK

Motion.ConvertJointToCart(MotionPose pose , int uflndex = 0, int
Method Name

tfindex =0)
Compatible robot software Collaborative (Copper): v7.5.0.0+
version Industrial (Bronze): v7.5.0.0+

Example Code

Motion/ConvertJointToCart.cs

cs
using Agilebot.IR;

using Agilebot.IR.Motion;
using Agilebot.IR.Types;

public class ConvertJointToCart
{
public static StatusCode Run(
string controllerIP,

bool uselocalProxy = true

/7 [ZH] WIERHEERRAALES A

// [EN] Initialize the Agilebot robot

Arm controller = new Arm(
controllerIP,

uselLocalProxy

g

/] [ZH] BEEAERHLESA
// [EN] Connect to the Agilebot robot
StatusCode code = controller.ConnectSync();
Console.WriteLine(
code != StatusCode.OK
? code.GetDescription()
"ESZ I /Successfully connected. "

)
if (code != StatusCode.OK)

{

return code;

Copyright © 2026-present Agilebot Robotics Co., Ltd. 91 /283

4.2 Robot Motion Control and Status | Agilebot Robot SDK

try

/] [ZH] BRI

// [EN] Create joint pose

MotionPose motionPose = new MotionPose();
motionPose.Pt = PoseType.Joint;

motionPose.Joint = new Joint

{
J1 = o,
32 = o,
J3 = 60,
J4 = 60,
J5 = o,
J6 = o,

}s

// [ZH] RERTE R Bl R /R s L
// [EN] Convert joint pose to Cartesian pose
MotionPose convertPose;
(convertPose, code) =
controller.Motion.ConvertJointToCart(
motionPose
)3
if (code == StatusCode.OK)
{
Console.WritelLine(" KRB R/RKII:");
Console.WritelLine(
$"fiE: X={convertPose.CartData.Position.X}, Y={convertPose.Car
tData.Position.Y}, Z={convertPose.CartData.Position.zZ}"
)3
Console.WriteLine(
$" &% A={convertPose.CartData.Position.A}, B={convertPose.Car

tData.Position.B}, C={convertPose.CartData.Position.C}"

)s
}
else
{
Console.WritelLine(
$" KT RI/RERIM: {code.GetDescription()}"
)s
}

Copyright © 2026-present Agilebot Robotics Co., Ltd. 92 /283

4.2 Robot Motion Control and Status | Agilebot Robot SDK

}
catch (Exception ex)
{
Console.WritelLine(
$"PATIEFE R K E % /Exception occurred during execution: {ex.Messag
e}”
)s
code = StatusCode.OtherReason;
}
finally
{
/] [ZH] RHAZERE
// [EN] Close the connection
StatusCode disconnectCode =
controller.Disconnect();
Console.WritelLine(
disconnectCode != StatusCode.OK
? disconnectCode.GetDescription()
"Successfully disconnected."
)3
}
return code;
}
}

4.2.5 Moving the Robot End Effector to a Specified Position

Motion.MovelJoint(MotionPose pose , double vel =1, double acc
Method Name

=1)
o Moves the robot end effector to a specified position, using the fastest
Description o)
path (joint motion).
Request Parameters pose : MotionPose Target position coordinates in Cartesian space or

joint coordinate system
vel :double Motion speed, range 0~1, representing multiple of

maximum speed

Copyright © 2026-present Agilebot Robotics Co., Ltd. 93 /283

4.2 Robot Motion Control and Status | Agilebot Robot SDK

Motion.MovelJoint(MotionPose pose , double vel =1, double acc
=1)

Method Name

acc : double Acceleration, range 0~1.2, representing multiple of

maximum acceleration

Return Value StatusCode: Motion command execution result
Compatible robot software Collaborative (Copper): v7.5.0.0+
version Industrial (Bronze): v7.5.0.0+

Example Code

Motion/MovelJoint.cs

cs
using Agilebot.IR;

using Agilebot.IR.Motion;
using Agilebot.IR.Types;

public class MoveJoint

{
public static StatusCode Run(

string controllerlIP,

bool uselocalProxy = true

/7 [ZH] WIERHEERRALES A

// [EN] Initialize the Agilebot robot

Arm controller = new Arm(
controllerIP,

uselLocalProxy

)5

/7 [ZH] EFZFEDRHLEA
// [EN] Connect to the Agilebot robot
StatusCode code = controller.ConnectSync();
Console.WriteLine(
code != StatusCode.OK
? code.GetDescription()

: "IN /Successfully connected. ™
)

Copyright © 2026-present Agilebot Robotics Co., Ltd. 94 / 283

4.2 Robot Motion Control and Status | Agilebot Robot SDK

if (code != StatusCode.OK)
{

return code;

try

// [ZH] BIEEFRTATHLZE
// [EN] Create joint pose
MotionPose motionPose = new MotionPose();
motionPose.Pt = PoseType.Joint;
motionPose.Joint = new Joint
{

J1 = 10,

J2 = 30,

J3 = 30,

Jj4 9,

J5 9,

J6 o,

};

/7 [ZH] EWLE ARS8 5 246 € AL B
// [EN] Move robot end to specified position
code = controller.Motion.MoveJoint(
motionPose,
9.5,
0.8
)s
if (code == StatusCode.OK)
{
Console.WriteLine(" K TTEshiERHKIN");
}
else
{
Console.WritelLine(
$" KYiBE KM : {code.GetDescription()}"
)s

}

catch (Exception ex)

{

Console.WriteLine(

Copyright © 2026-present Agilebot Robotics Co., Ltd. 95/ 283

4.2 Robot Motion Control and Status | Agilebot Robot SDK

$"PATIEFE R A 7R /Exception occurred during execution: {ex.Messag

e}"”
)s
code = StatusCode.OtherReason;
}
finally
{
/] [ZH] KRMEEZ
// [EN] Close the connection
StatusCode disconnectCode =
controller.Disconnect();
Console.WritelLine(
disconnectCode != StatusCode.OK
? disconnectCode.GetDescription()
"Successfully disconnected."”
);
}
return code;
}
}

4.2.6 Moving the Robot End Effector Along a Straight Line to a
Specified Position

Motion.Moveline(MotionPose pose , double vel =100, double acc
=1)

Method Name

Moves the robot end effector along a straight line to a specified position,

Description)) i
using a linear path between two points.

pose : MotionPose Target position coordinates in Cartesian space or joint
coordinate system
vel :double Motion speed, range 0~5000mm/s, representing robot end
Request Parameters
effector movement speed
acc : double Acceleration, range 0~1.2, representing multiple of

maximum acceleration

Copyright © 2026-present Agilebot Robotics Co., Ltd. 96 / 283

4.2 Robot Motion Control and Status | Agilebot Robot SDK

Motion.MovelLine(MotionPose pose , double vel = 100, double acc
Method Name

=1)
Return Value StatusCode: Motion command execution result
Compatible robot Collaborative (Copper): v7.5.0.0+
software version Industrial (Bronze): v7.5.0.0+

Example Code

Motion/Moveline.cs

cs
using Agilebot.IR;

using Agilebot.IR.Motion;
using Agilebot.IR.Types;

public class Moveline
{
public static StatusCode Run(
string controllerlIP,

bool uselocalProxy = true

/1 [ZH] WIEEHAER RIS A

// [EN] Initialize the Agilebot robot

Arm controller = new Arm(
controllerIP,

uselLocalProxy

);

/] [ZH] BEEAERHLEA
// [EN] Connect to the Agilebot robot
StatusCode code = controller.ConnectSync();
Console.WriteLine(
code != StatusCode.OK
? code.GetDescription()
: "EHHIN/Successfully connected."

)E

if (code != StatusCode.OK)
{

Copyright © 2026-present Agilebot Robotics Co., Ltd. 97 /283

4.2 Robot Motion Control and Status | Agilebot Robot SDK

return code;

}
try
{
// [ZH] BIEFRATHLZE
// [EN] Create joint pose
MotionPose motionPose = new MotionPose();
motionPose.Pt = PoseType.Joint;
motionPose.Joint = new Joint
{
J1i = 20,
32 = 40,
J3 = 40,
J4 =5,
J5 =5,
J6 =5,
}s
/7 [ZH] LS AR iy B 3h 248 € A &
// [EN] Move robot end in straight line to specified position
code = controller.Motion.MovelLine(
motionPose,
100,
1.0
)3
if (code == StatusCode.OK)
{
Console.WritelLine("HZIZZNERMIN");
}
else
{
Console.WriteLine(
$"HLBFNKM: {code.GetDescription()}"
)s
}
}
catch (Exception ex)
{
Console.WritelLine(

$"PATILFE R A FH /Exception occurred during execution: {ex.Messag
e}l'

Copyright © 2026-present Agilebot Robotics Co., Ltd. 98 /283

4.2 Robot Motion Control and Status | Agilebot Robot SDK

)
code = StatusCode.OtherReason;

}
finally

{
/] [ZH] KRMEE
// [EN] Close the connection
StatusCode disconnectCode =
controller.Disconnect();
Console.WritelLine(
disconnectCode != StatusCode.OK
? disconnectCode.GetDescription()

"Successfully disconnected."”

IE

return code;

4.2.7 Moving the Robot End Effector Along an Arc to a Specified
Position

Motion.MoveCircle(MotionPose posel , MotionPose pose2 , double
vel =100, double acc =1)

Method Name

Description Moves the robot end effector along an arc to a specified position.

posel : MotionPose Robot motion intermediate pose

pose2 : MotionPose Robot motion final pose

vel :double Motion speed, range 0~5000mm/s, representing robot end
Request Parameters

effector movement speed

acc : double Acceleration, range 0~1.2, representing multiple of

maximum acceleration

Return Value StatusCode: Motion command execution result
Compatible robot Collaborative (Copper): v7.5.0.0+
software version Industrial (Bronze): v7.5.0.0+

Copyright © 2026-present Agilebot Robotics Co., Ltd. 99/ 283

4.2 Robot Motion Control and Status | Agilebot Robot SDK

Example Code

Motion/MoveCircle.cs

using Agilebot.IR;
using Agilebot.IR.Motion;
using Agilebot.IR.Types;

public class MoveCircle
{
public static StatusCode Run(
string controllerlIP,

bool uselocalProxy = true

/7 [ZH] WIIRHTER RIS N

// [EN] Initialize the Agilebot robot

Arm controller = new Arm(
controllerIP,

uselLocalProxy

);

/] [ZH] BEEAERHLEA
// [EN] Connect to the Agilebot robot
StatusCode code = controller.ConnectSync();
Console.WriteLine(
code != StatusCode.OK
? code.GetDescription()
: "R /Successfully connected. "

)E

if (code != StatusCode.OK)
{

return code;

try
// [ZH] BIEE— M GRER)D

// [EN] Create first pose (waypoint)

MotionPose motionPosel = new MotionPose();

Copyright © 2026-present Agilebot Robotics Co., Ltd.

cs

100/ 283

4.2 Robot Motion Control and Status | Agilebot Robot SDK

motionPosel.Pt = PoseType.Joint;

motionPosel.Joint = new Joint

{
J1 = o,
32 = o,
I3 = 60,
J4 = 60,
J5 = o,
J6 = o,

s

/] [ZH] QIS =A% (K RD

// [EN] Create second pose (endpoint)
MotionPose motionPose2 = new MotionPose();
motionPose2.Pt = PoseType.Joint;

motionPose2.Joint = new Joint

{
J1 = o,
32 = 30,
I3 = 70,
J4 = 40,
J5 = 0,
J6 = 0,

s

/7 [ZH] NS AR iy IR 3h 245 2 f AL &
// [EN] Move robot end in arc to specified position

code = controller.Motion.MoveCircle(

motionPosel,
motionPose2,
100,
1.0
)
if (code == StatusCode.OK)
{
Console.WritelLine("JRZiEENIERKIN");
}
else
{

Console.WritelLine(
$"IMLkizF KM : {code.GetDescription()}"
)s

Copyright © 2026-present Agilebot Robotics Co., Ltd. 101/ 283

4.2 Robot Motion Control and Status | Agilebot Robot SDK

}
}
catch (Exception ex)
{
Console.WritelLine(
$" AT ISR kA R H /Exception occurred during execution: {ex.Messag
e}"”
)s
code = StatusCode.OtherReason;
}
finally
{
/] [ZH] KPS
// [EN] Close the connection
StatusCode disconnectCode =
controller.Disconnect();
Console.WritelLine(
disconnectCode != StatusCode.OK
? disconnectCode.GetDescription()
"Successfully disconnected."
)3
}
return code;
}
}

4.2.8 Getting the Current Pose of the Robot

Motion.GetCurrentPose(PoseType pt ,int uflindex =0, int tfindex =0
Method Name

)
o Gets the current pose of the robot, which can be pose information in
Description) o)
Cartesian space or joint coordinate system.
Request Parameters pt : PoseType Pose type

ufindex :int When using PoseType.CART, user coordinate system index

must be provided, default is 0

Copyright © 2026-present Agilebot Robotics Co., Ltd. 102 / 283

4.2 Robot Motion Control and Status | Agilebot Robot SDK

Motion.GetCurrentPose(PoseType pt ,int ufindex =0, int tflndex =0
)

Method Name

tfindex :int When using PoseType.CART, tool coordinate system index

must be provided, default is 0

MotionPose: Robot pose data
Return Value])
StatusCode: Get operation execution result

Compatible robot Collaborative (Copper): v7.5.0.0+

software version Industrial (Bronze): v7.5.0.0+

Example Code

Motion/GetCurrentPose.cs

cs
using Agilebot.IR;

using Agilebot.IR.Motion;
using Agilebot.IR.Types;

public class GetCurrentPose

{
public static StatusCode Run(

string controllerlIP,

bool uselocalProxy = true

/1 [ZH] WIEEHAER RIS A

// [EN] Initialize the Agilebot robot

Arm controller = new Arm(
controllerIP,

uselLocalProxy

);

/7 [ZH] EFEFEDRHLEGA
// [EN] Connect to the Agilebot robot
StatusCode code = controller.ConnectSync();
Console.WriteLine(
code != StatusCode.OK

? code.GetDescription()

: "HERERLY)/Successfully connected."
)

Copyright © 2026-present Agilebot Robotics Co., Ltd. 103/ 283

4.2 Robot Motion Control and Status | Agilebot Robot SDK

if (code != StatusCode.OK)
{

return code;

try

// [ZH] FREWLG N RTALE (G RIRAAPR)
// [EN] Get robot current pose (Cartesian coordinates)
MotionPose cartPose;
(cartPose, code) =
controller.Motion.GetCurrentPose(
PoseType.Cart,
0,
(%]
)s
if (code == StatusCode.OK)
{
Console.WriteLine("MAIEH R/RNMLL:");
Console.WritelLine(
$"fi%E: X={cartPose.CartData.Position.X}, Y={cartPose.CartData.
Position.Y}, Z={cartPose.CartData.Position.Z}"
)s
Console.WritelLine(
$" %% A={cartPose.CartData.Position.A}, B={cartPose.CartData.

Position.B}, C={cartPose.CartData.Position.C}"

)3
}
else
{
Console.WritelLine(
$"REUVEH R /RMLE R : {code.GetDescription()}"
)s
}

// [ZH] FREWLE AR RTALE (O ALFR)

// [EN] Get robot current pose (joint coordinates)

MotionPose jointPose;

(jointPose, code) =
controller.Motion.GetCurrentPose(

PoseType.Joint,

Copyright © 2026-present Agilebot Robotics Co., Ltd. 104 / 283

4.2 Robot Motion Control and Status | Agilebot Robot SDK

)
if (code == StatusCode.OK)

{

Y

Console.WritelLine("H4RiRXT & ");
Console.WritelLine(
$"xT{E: J1={jointPose.Joint.J1}, J2={jointPose.Joint.J2}, J3=
{jointPose.Joint.J3}, J4={jointPose.Joint.J4}, J5={jointPose.Joint.J]5}, J6={jointPo

se.Joint.J6}"
)s
}
else
{
Console.WritelLine(
$" KBTI : {code.GetDescription()}"
)s
}
}
catch (Exception ex)
{
Console.WritelLine(
$" BT R R A R /Exception occurred during execution: {ex.Messag
e}"
)3
code = StatusCode.OtherReason;
}
finally
{
/] [ZH] RHA&ES
// [EN] Close the connection
StatusCode disconnectCode =
controller.Disconnect();
Console.WriteLine(
disconnectCode != StatusCode.OK
? disconnectCode.GetDescription()
"Successfully disconnected."
)s
}

return code;

Copyright © 2026-present Agilebot Robotics Co., Ltd. 105/ 283

4.2 Robot Motion Control and Status | Agilebot Robot SDK

4.2.9 Getting the Robot's DH Parameters

Method Name Motion.GetDHParam()
Description Gets the robot's DH (Denavit-Hartenberg) parameters.
Request Parameters None

List<DHparam>: DH parameter list
Return Value

StatusCode: Get operation execution result

)) Collaborative (Copper): v7.5.0.0+
Compatible robot software version]
Industrial (Bronze): Not supported

Example Code

Motion/GetDHParam.cs

cs
using Agilebot.IR;

using Agilebot.IR.Types;

public class GetDHParam
{
public static StatusCode Run(
string controllerIP,

bool uselLocalProxy = true

/1 [ZH] W HTEh Rl A

// [EN] Initialize the Agilebot robot

Arm controller = new Arm(
controllerIP,

useLocalProxy

);

Copyright © 2026-present Agilebot Robotics Co., Ltd. 106/ 283

4.2 Robot Motion Control and Status | Agilebot Robot SDK

[/ [ZH] DRI A
// [EN] Connect to the Agilebot robot
StatusCode code = controller.ConnectSync();
Console.WriteLine(
code != StatusCode.OK
? code.GetDescription()
. "IERERT)/Successfully connected.”

);

if (code != StatusCode.OK)
{

return code;

try

// [ZH] ZREXHLES A FIDHZ %L

// [EN] Get robot DH parameters

List<DHparam> dhParamsList;

(dhParamsList, code) =
controller.Motion.GetDHParam(1);

if (code == StatusCode.OK)

{
Console.WriteLine("3KREXDHS &I : ") ;
for (int i = @; i < dhParamsList.Count; i++)
{
var dh = dhParamsList[i];
Console.WriteLine(
$"#h{i + 1}: Alpha={dh.alpha}, A={dh.a}, D={dh.d}, Offset=
{dh.offset}"
)
}
}
else
{
Console.WritelLine(
$"FKEDHSH K : {code.GetDescription()}"
)s
}
}
catch (Exception ex)
{

Copyright © 2026-present Agilebot Robotics Co., Ltd. 107 /283

4.2 Robot Motion Control and Status | Agilebot Robot SDK

Console.WritelLine(

$"PATILFE R A FH /Exception occurred during execution: {ex.Messag

e}"”
)s
code = StatusCode.OtherReason;
}
finally
{
/] [ZH] KPS
// [EN] Close the connection
StatusCode disconnectCode =
controller.Disconnect();
Console.WritelLine(
disconnectCode != StatusCode.OK
? disconnectCode.GetDescription()
"Successfully disconnected."”
)
}
return code;
}
}

4.2.10 Setting the Robot's DH Parameters

Method Name Motion.SetDHParam(List<DHparam> dHparams)
Description Sets the robot's DH (Denavit-Hartenberg) parameters.
Request Parameters dHparams : List<DHparam> DH parameter list
Return Value StatusCode: Set operation execution result

_ . Collaborative (Copper): v7.5.0.0+
Compatible robot software version]
Industrial (Bronze): Not supported

Example Code

Copyright © 2026-present Agilebot Robotics Co., Ltd. 108 /283

4.2 Robot Motion Control and Status | Agilebot Robot SDK

Motion/SetDHParam.cs

using Agilebot.IR;
using Agilebot.IR.Types;

public class SetDHParam
{
public static StatusCode Run(
string controllerIP,

bool uselocalProxy = true

/1 [ZH] W HTE AL A

// [EN] Initialize the Agilebot robot

Arm controller = new Arm(
controllerIP,

useLocalProxy

)5

/1 [ZH] EEFEDRLA A
// [EN] Connect to the Agilebot robot
StatusCode code = controller.ConnectSync();
Console.WritelLine(
code != StatusCode.OK
? code.GetDescription()

"I /Successfully connected."
)

if (code != StatusCode.OK)
{

return code;

try

// [ZH] Je3RECHHTIIDHZ 4L

// [EN] First get current DH parameters

List<DHparam> dhParamsList;

(dhParamsList, code) =
controller.Motion.GetDHParam(1);

if (code != StatusCode.OK)

Copyright © 2026-present Agilebot Robotics Co., Ltd.

cs

109 /283

4.2 Robot Motion Control and Status | Agilebot Robot SDK

{
Console.WritelLine(
$"IKEXDHSH LM : {code.GetDescription()}"
)s
return code;
}
Console.WritelLine(
"IKIDHZSHUN), HERREMFNSHE. ..
)s

// [ZH] WEDHZE (X Bk B M FEIMSHAE NRED
// [EN] Set DH parameters (set same parameters as example)

code = controller.Motion.SetDHParam(

dhParamsList
)
if (code == StatusCode.OK)
{
Console.WriteLine ("W EDHSEUKIN");
}
else
{
Console.WritelLine(
$" W EDHSE KM : {code.GetDescription()}"
)s
}
}
catch (Exception ex)
{
Console.WriteLine(
$" PATIERE K /Exception occurred during execution: {ex.Messag
e}ll
)s
code = StatusCode.OtherReason;
}
finally
{

/] [ZH] KMEE

// [EN] Close the connection

StatusCode disconnectCode =
controller.Disconnect();

Console.WritelLine(

Copyright © 2026-present Agilebot Robotics Co., Ltd. 110/ 283

4.2 Robot Motion Control and Status | Agilebot Robot SDK

disconnectCode != StatusCode.OK
? disconnectCode.GetDescription()

: "Successfully disconnected."

);

return code;

4.2.11 Getting the Robot Axis Lock Status

Method Name Motion.GetDragSet()
o Gets the current robot axis lock status, which only applies to teaching
Description
movements.
Request Parameters None
DragsStatus: Axis lock status, True indicates the axis is movable, False
Return Value indicates it is locked
StatusCode: Result of function execution
Compatible robot software Collaborative (Copper): v7.5.0.0+
version Industrial (Bronze): Not supported

4.2.12 Setting the Robot Axis Lock Status

Method Name Motion.SetDragSet(DragStatus dragStatus)

o Sets the current robot axis lock status, which only applies to teaching
Description
movements.

dragStatus : DragStatus Axis lock status, default is all True: unlocked
Request Parameters tat
state

Return Value StatusCode: Result of function execution

Copyright © 2026-present Agilebot Robotics Co., Ltd. 111/ 283

4.2 Robot Motion Control and Status | Agilebot Robot SDK

Method Name Motion.SetDragSet(DragStatus dragStatus)
Compatible robot software Collaborative (Copper): v7.5.0.0+
version Industrial (Bronze): Not supported

4.2.13 Enabling Drag Teaching for the Robot

Method Name Motion.EnableDrag(bool dragState)
Description Enables or disables drag teaching for the robot.

dragState : bool The drag state of the robot, true indicates entering drag

Request Parameters o .
mode, false indicates exiting drag mode

Return Value StatusCode: Result of function execution
Compatible robot Collaborative (Copper): v7.5.0.0+
software version Industrial (Bronze): Not supported

Example Code

Motion/DragControl.cs

cs
using Agilebot.IR;

using Agilebot.IR.Motion;
using Agilebot.IR.Types;

public class DragControl
{
public static StatusCode Run(
string controllerIP,

bool uselocalProxy = true

/1 [ZH] WIassEh s plas A

// [EN] Initialize the Agilebot robot

Arm controller = new Arm(
controllerIP,

useLocalProxy

Copyright © 2026-present Agilebot Robotics Co., Ltd. 112/ 283

4.2 Robot Motion Control and Status | Agilebot Robot SDK

);

/1 [ZH] EEFEDRHLA A
// [EN] Connect to the Agilebot robot
StatusCode code = controller.ConnectSync();
Console.WriteLine(
code != StatusCode.OK
? code.GetDescription()
"EHE T /Successfully connected.”

)s

if (code != StatusCode.OK)
{

return code;

try

/7 [ZH] SREBCHATHLES AR AhBUE R
// [EN] Get current robot axis lock status
DragStatus dragStatus;
(dragStatus, code) =
controller.Motion.GetDragSet();
if (code == StatusCode.OK)
{
Console.WriteLine ("IREUHIB ERERLI: ") ;
Console.WritelLine(
$"X%Hl: {dragStatus.CartStatus.X}, Y#i: {dragStatus.CartStatus.
Y}, Z#ii: {dragStatus.CartStatus.z}"
)3
Console.WriteLine(
$" LML) {dragStatus.IsContinuousDrag}"

)s
}
else
{
Console.WritelLine(
$" KRB E IR R : {code.GetDescription()}"
)
}

// [ZH] PBECAETHLES AR e RS

Copyright © 2026-present Agilebot Robotics Co., Ltd. 113/ 283

4.2 Robot Motion Control and Status | Agilebot Robot SDK

// [EN] Modify current robot axis lock status
if (code == StatusCode.OK)

{
dragStatus.CartStatus.X = false;
dragStatus.IsContinuousDrag = true;
code = controller.Motion.SetDragSet(
dragStatus
)
if (code == StatusCode.OK)
{
Console.WriteLine ("W EMBUEIRSHII");
¥
else
{
Console.WriteLine(
$" B HBUEIRS KM : {code.GetDescription()}"
)
¥
}

// [ZH] JEZh#esh R SERE A 7 ZIEE)
// [EN] Enable drag (Note: use with caution in practice)
if (code == StatusCode.OK)

{

Console.WritelLine(
"k BaifEshiiee, ik
)3
code = controller.Motion.EnableDrag(true);
if (code == StatusCode.OK)

{
Console.WriteLine ("B RIN");

/7 [ZH] 54— Bt i) J5 15 Lk 4)
// [EN] Wait for a while then stop drag
Console.WritelLine(
B R LU ek v P
)s
Thread.Sleep(3000);

code = controller.Motion.EnableDrag(
false

)5

Copyright © 2026-present Agilebot Robotics Co., Ltd.

114 /283

4.2 Robot Motion Control and Status | Agilebot Robot SDK

if (code == StatusCode.OK)

{
Console.WriteLine("{ZILH#EEIRIN");
}
else
{
Console.WritelLine(
$"Z 1 HEFN K : {code.GetDescription()}"
)
}
}
else
{
Console.WriteLine(
$"EEhHEsh KW : {code.GetDescription()}"
)s
}
}
}
catch (Exception ex)
{
Console.WritelLine(
$" BT R R A R /Exception occurred during execution: {ex.Messag
e}"
)3
code = StatusCode.OtherReason;
}
finally
{
/] [ZH] RHA&ES
// [EN] Close the connection
StatusCode disconnectCode =
controller.Disconnect();
Console.WriteLine(
disconnectCode != StatusCode.OK
? disconnectCode.GetDescription()
"Successfully disconnected."
)s
}

return code;

Copyright © 2026-present Agilebot Robotics Co., Ltd. 115/ 283

4.2 Robot Motion Control and Status | Agilebot Robot SDK

4.2.14 Entering Real-Time Position Control Mode

Method Name

Description

Request Parameters

Return Value

Note

Compatible robot software

version

Motion.EnterPositionControl()

Enters real-time position control mode, allowing precise position

control of the robot.
None

StatusCode: Result of function execution

After entering real-time control mode, control commands must be sent

via UDP.

Collaborative (Copper): v7.5.2.0+

Industrial (Bronze): Not supported

4.2.15 Exiting Real-Time Position Control Mode

Method Name

Description

Request Parameters

Return Value

Note

Compatible robot software

version

Copyright © 2026-present Agilebot Robotics Co., Ltd.

Motion.ExitPositionControl()

Exits real-time position control mode, returning to the default robot

control state.
None
StatusCode: Result of function execution

After exiting, the robot will no longer accept real-time control

commands.

Collaborative (Copper): v7.5.2.0+

Industrial (Bronze): Not supported

116 /283

4.2 Robot Motion Control and Status | Agilebot Robot SDK

4.2.16 Setting Subscription Parameters

Motion.SetUDPFeedbackParams(bool flag , string ip ,int interval , int
Method Name o
feedbackType , List<int> DOList = null)

Configures the subscription parameters for the robot to push data to a

Description -
specified IP address.
flag :bool Whether to enable UDP data pushing;
ip :string IP address of the recipient;
Request Parameters interval :int Interval for sending data (unit: milliseconds);
feedbackType :int Feedback data format (0: XML format);
DOList : List<int> List of DO signals to be obtained (up to ten, optional)
Return Value StatusCode: Result of function execution
- The parameter settings are only effective when the UDP data pushing
ote
function is enabled.
Compatible robot Collaborative (Copper): v7.5.2.0+
software version Industrial (Bronze): Not supported

Example Code

Motion/PositionControl.cs

cs
using Agilebot.IR;

using Agilebot.IR.Motion;
using Agilebot.IR.Types;

public class PositionControl

{
public static StatusCode Run(

string controllerlIP,

bool uselocalProxy = true

// [ZH] WA TERLEE A
// [EN] Initialize the Agilebot robot

Arm controller = new Arm(

Copyright © 2026-present Agilebot Robotics Co., Ltd. 117/ 283

4.2 Robot Motion Control and Status | Agilebot Robot SDK

controllerIP,

uselLocalProxy

);

// [ZH] EEEDRPLESA
// [EN] Connect to the Agilebot robot
StatusCode code = controller.ConnectSync();
Console.WriteLine(
code != StatusCode.OK
? code.GetDescription()
: "HEEHERLY)/Successfully connected. ™

)s

if (code != StatusCode.OK)
{

return code;

try

// [ZH] WHEUDPIZHL
// [EN] Set UDP feedback parameters

code = controller.Motion.SetUDPFeedbackParams(

true,
"192.168.1.1",
10,
0
)s
if (code == StatusCode.OK)
{
Console.WriteLine ("X BUDPIHSHULIN");
}
else
{
Console.WritelLine(
$" BB UDP RS H R : {code.GetDescription()}"
)
}

// [ZH] BENSC AL 4% A 2
// [EN] Enter real-time position control mode

code = controller.Motion.EnterPositionControl();

Copyright © 2026-present Agilebot Robotics Co., Ltd. 118 /283

4.2 Robot Motion Control and Status | Agilebot Robot SDK

if (code == StatusCode.OK)
{

Console.WritelLine(
" HEN SN B AR R T
)s

// [ZH] FESER] DA AR IXUDPEE 42 il Bl 25 A\ 4R
// [EN] Insert UDP data control code here
Console.WritelLine(

"R ESENA BRI, Il UDP ARSI
)s
Console.WriteLine("&fF280...");

Thread.Sleep(2000);

/7 [ZH] GBS A7 B 2 HI B

// [EN] Exit real-time position control mode

code =
controller.Motion.ExitPositionControl();

if (code == StatusCode.OK)

{

Console.WriteLine(
" IR H SN A R R T
)s

else

Console.WriteLine(
$" 3B H SER AL B HI R . {code.GetDescription()}"
)

else

Console.WritelLine(
$" NS AL B A R . {code.GetDescription()}"
)

}

catch (Exception ex)

{

Console.WritelLine(

$"PATIEFE A R A FH /Exception occurred during execution: {ex.Messag

Copyright © 2026-present Agilebot Robotics Co., Ltd. 119/ 283

4.2 Robot Motion Control and Status | Agilebot Robot SDK

e}"”
)s
code = StatusCode.OtherReason;
}
finally
{
/] [ZH] KMEE
// [EN] Close the connection
StatusCode disconnectCode =
controller.Disconnect();
Console.WritelLine(
disconnectCode != StatusCode.OK
? disconnectCode.GetDescription()
"Successfully disconnected.™
)
}
return code;
}
}

Data Push Description

Name Field Description

Value in the X direction in the tool coordinate

Rist: Cartesian Position X S

system, unit is millimeters

y Value in the Y direction in the tool coordinate
system, unit is millimeters

. Value in the Z direction in the tool coordinate
system, unit is millimeters

" Rotation around the X axis in the tool coordinate
system, unit is degrees

. Rotation around the Y axis in the tool coordinate
system, unit is degrees

C Rotation around the Z axis in the tool coordinate

Copyright © 2026-present Agilebot Robotics Co., Ltd. 120/ 283

Name

AlPos: Joint Position

ElPos: Additional Axis
Data

WristBtnState: Wrist
Button State

Digout: DO Output

ProgramStatus: Program
Status

IPOC: Timestamp

4.2 Robot Motion Control and Status | Agilebot Robot SDK

Field

A1-A6

ElPos

Button State

DragModel
RecordJoint
PauseResume

Digout

Progld

Status

Xpath

IPOC

Description

system, unit is degrees

Values of the six joints, unit is degrees

Additional axis data

1 = Button pressed, 0 = Button released

Drag button state
Teach record button state
Pause/resume button state

State of digital output (DO)

Program ID

Interpreter execution status:
0 = INTERPRETER_IDLE

1 = INTERPRETER_EXECUTE
2 = INTERPRETER_PAUSED

Program segment return value, format is program

name: line number

Timestamp

4.2.17 Getting the Robot's Soft Limits

Method Name Motion.GetUserSoftLimit()

Description Gets the current soft limits of the robot.

Request Parameters None

Return Value List<List<double>>: Robot's soft limits, the first layer of the list represents each

axis, and the second layer represents the lower and upper limit values of each

Copyright © 2026-present Agilebot Robotics Co., Ltd.

121 /283

4.2 Robot Motion Control and Status | Agilebot Robot SDK

Method Name Motion.GetUserSoftLimit()

axis

StatusCode: Result of function execution

Compatible robot Collaborative (Copper): v7.5.0.0+

software version Industrial (Bronze): v7.5.0.0+

4.2.18 Specifying UDP Position Control Parameters

Motion.SetPositionTrajectoryParams(int maxTimeoutCount , int timeout ,
Method Name
double wristElbowThreshold , double shoulderThreshold)

Description Specifies the parameters related to UDP position control.

maxTimeoutCount : Maximum number of timeouts;
timeout : Timeout period (i.e., send interval, default is 20ms);

Request Parameters) . . .
wristElbowThreshold : Threshold for wrist/elbow approaching singularity;

shoulderThreshold : Threshold for approaching shoulder singularity;

Return Value StatusCode: Result of function execution
Compatible robot Collaborative (Copper): v7.5.0.0+
software version Industrial (Bronze): v7.5.0.0+

4.2.19 Payload-Related Interfaces

4.2.19.1 Getting the Current Active Payload

Method Name Motion.Payload.GetCurrentPayload()
Description Gets the currently active payload information.
Request Parameters None

int: Index of the currently active payload
Return Value .]
StatusCode: Result of function execution

Copyright © 2026-present Agilebot Robotics Co., Ltd. 122/ 283

4.2 Robot Motion Control and Status | Agilebot Robot SDK

Method Name Motion.Payload.GetCurrentPayload()

Collaborative (Copper): v7.5.0.0+

Compatible robot software version)
Industrial (Bronze): v7.5.0.0+

4.2.19.2 Getting the Corresponding Payload

Method Name Motion.Payload.GetPayloadByld(int index)
Description Gets the corresponding payload.

Request Parameters index : Payload index

Return Value StatusCode: Result of function execution

Collaborative (Copper): v7.5.0.0+

Compatible robot software version)
Industrial (Bronze): v7.5.0.0+

4.2.19.3 Activating the Corresponding Payload

Method Name Motion.Payload.SetCurrentPayload(int index)
Description Activates the corresponding payload.

Request Parameters index : Payload index

Return Value StatusCode: Result of function execution

Collaborative (Copper): v7.5.0.0+

Compatible robot software version]
Industrial (Bronze): v7.5.0.0+

Note The payload ID must exist in the current device.

4.2.19.4 Getting All Payload Information

Method Name Motion.Payload.GetAllPayloadinfo()
Description Gets detailed information of all payloads.
Request Parameters None

Copyright © 2026-present Agilebot Robotics Co., Ltd. 123 /283

4.2 Robot Motion Control and Status | Agilebot Robot SDK

Method Name Motion.Payload.GetAllPayloadinfo()

Dictionary<uint, string>: Returns a dictionary of payload
Return Value information

StatusCode: Result of function execution

Compatible robot software Collaborative (Copper): v7.5.0.0+

version Industrial (Bronze): v7.5.0.0+

4.2.19.5 Adding a Payload

Method Name Motion.Payload.AddPayload(Payloadinfo payload)
Description Adds a new payload.

Request Parameters payload : PayloadInfo Payload object

Return Value StatusCode: Result of function execution

The new payload ID must not exist in the current device and must be

Note

between 1 and 10.
Compatible robot software Collaborative (Copper): v7.5.0.0+
version Industrial (Bronze): v7.5.0.0+

4.2.19.6 Deleting a Specified Payload

Method Name Motion.Payload.DeletePayload(int index)
Description Deletes the payload with the specified index.
Request Parameters index :int Payload index

Return Value StatusCode: Result of function execution
Compatible robot Collaborative (Copper): v7.5.0.0+

software version Industrial (Bronze): v7.5.0.0+

Note: The currently active payload cannot be deleted. If you want to delete the
Note active payload, please activate another payload first and then delete the current

one.

Copyright © 2026-present Agilebot Robotics Co., Ltd. 124/ 283

4.2 Robot Motion Control and Status | Agilebot Robot SDK

4.2.19.7 Updating a Specified Payload

Method Name Motion.Payload.UpdatePayload(Payloadinfo payload)
Description Updates the information of the specified payload.

Request Parameters payload : PayloadInfo Payload object

Return Value StatusCode: Result of function execution

Note The payload ID must exist in the current device.

Collaborative (Copper): v7.5.0.0+

Compatible robot software version)
Industrial (Bronze): v7.5.0.0+

Example Code

Motion/PayloadControl.cs

cs
using Agilebot.IR;

using Agilebot.IR.Motion;

public class PayloadControl
{
public static StatusCode Run(
string controllerIP,

bool uselocalProxy = true

/1 [ZH] Wl plas A

// [EN] Initialize the Agilebot robot

Arm controller = new Arm(
controllerIP,

uselLocalProxy

);

/1 [ZH] EEFEDRLAE A
// [EN] Connect to the Agilebot robot
StatusCode code = controller.ConnectSync();
Console.WriteLine(

code != StatusCode.OK

? code.GetDescription()

Copyright © 2026-present Agilebot Robotics Co., Ltd. 125/ 283

4.2 Robot Motion Control and Status | Agilebot Robot SDK

: "IERRT)/Successfully connected.”
)

if (code != StatusCode.OK)
{

return code;

try

// [ZH] FREAESEE

// [EN] Get payload list

Dictionary<int, string> payloadlList;

(payloadList, code) =
controller.Motion.Payload.GetAllPayloadInfo();

if (code == StatusCode.OK)

{
Console.WritelLine("3REXG1#RFIFR BRI ") ;
foreach (var p in payloadList)
{
Console.WriteLine(
$"H1#ID: {p.Key}, Fih: {p.value}"
)s
}
}
else
{
Console.WritelLine(
$" RIS FIR KW : {code.GetDescription()}"
)3
}

/7 [ZH] SRECHHTGE K 57
// [EN] Get current active payload
int currentPayload;
(currentPayload, code) =
controller.Motion.Payload.GetCurrentPayload();
if (code == StatusCode.OK)
{
Console.WritelLine(
$" YHTEGE I 1 #ID: {currentPayload}”
)s

Copyright © 2026-present Agilebot Robotics Co., Ltd. 126/ 283

4.2 Robot Motion Control and Status | Agilebot Robot SDK

}
else
{
Console.WritelLine(
$"IRE AT F1 3 KM : {code.GetDescription()}"
)s
}

/1 [ZH] @I R
// [EN] Add new payload
PayloadInfo payload = new()

{
Id = 3,
Comment = "R fE",
Weight = 1.0,
MassCenter = new()
{
X =1,
Y = 2,
= 3,
¥
InertiaMoment = new()
{
LX = 10,
LY = 20,
LZ = 30,
¥
}s

code = controller.Motion.Payload.AddPayload(

payload
)s
if (code == StatusCode.OK)
{
Console.WriteLine("¥INFE LI) ;
}
else
{
Console.WritelLine(
$"ARINfE M : {code.GetDescription()}"
)
}

Copyright © 2026-present Agilebot Robotics Co., Ltd. 127/ 283

4.2 Robot Motion Control and Status | Agilebot Robot SDK

// [ZH] BB ARSI 5
// [EN] Set current active payload
if (code == StatusCode.OK)

{
code =
controller.Motion.Payload.SetCurrentPayload(
3
)s
if (code == StatusCode.OK)
{
Console.WriteLine (" & H4AiMEKIN");
}
else
{
Console.WritelLine(
$" B AT R : {code.GetDescription()}"
)s
}
}
}
catch (Exception ex)
{
Console.WritelLine(
$" BT R R A R /Exception occurred during execution: {ex.Messag
e}"
)3
code = StatusCode.OtherReason;
}
finally
{
/] [ZH] RIA&ESE
// [EN] Close the connection
StatusCode disconnectCode =
controller.Disconnect();
Console.WriteLine(
disconnectCode != StatusCode.OK
? disconnectCode.GetDescription()
"Successfully disconnected."”
)s
}

Copyright © 2026-present Agilebot Robotics Co., Ltd. 128 /283

4.2 Robot Motion Control and Status | Agilebot Robot SDK

return code;

4.2.19.8 Checking if Axis 3 is Horizontal

Method Name Motion.Payload.CheckAxisThreeHorizontal()
Description Checks if Axis 3 is horizontal.
Request Parameters None

double: The horizontal angle of Axis 3
Return Value . .
StatusCode: Result of function execution

Compatible robot software Collaborative (Copper): v7.5.2.0+

version Industrial (Bronze): Not supported

Not The horizontal angle must be between -1 and 1 to perform payload
ote
identification.

4.2.19.9 Getting the Payload Identification State

Method Name Motion.Payload.GetPayloadldentifyState()
Description Gets the state of payload identification.
Request Parameters None

PayloadldentifyState: Payload identification state

Return Value .]
StatusCode: Result of function execution

_ . Collaborative (Copper): v7.5.2.0+
Compatible robot software version)
Industrial (Bronze): Not supported

4.2.19.10 Starting Payload Identification

Copyright © 2026-present Agilebot Robotics Co., Ltd. 129/ 283

4.2 Robot Motion Control and Status | Agilebot Robot SDK

Motion.Payload.StartPayloadidentify(double weight , double
Method Name 2
angle

Description Starts payload identification.

weight : double Payload weight (use -1 for unknown weight)
Request Parameters])
angle :double Allowed rotation angle of Axis 6 (30-90 degrees)

Return Value StatusCode: Result of function execution
Compatible robot software Collaborative (Copper): v7.5.2.0+
version Industrial (Bronze): Not supported

Not You must enter the payload identification state before starting payload
ote
identification.

4.2.19.11 Getting the Payload Identification Result

Method Name Motion.Payload.PayloadldentifyResult()
Description Gets the result of payload identification.
Request Parameters None

Payloadinfo: Payload identification result
Return Value .]
StatusCode: Result of function execution

)) Collaborative (Copper): v7.5.2.0+
Compatible robot software version]
Industrial (Bronze): Not supported

4.2.19.12 Starting Interference Check for Payload Identification

Motion.Payload.InterferenceCheckForPayloadldentify(double weight |,
Method Name
double angle)

o Starts interference check for payload identification to check for potential
Description o
collisions.

weight : double Payload weight (use -1 for unknown weight)
Request Parameters i)
angle :double Allowed rotation angle of Axis 6 (30-90 degrees)

Return Value StatusCode: Result of function execution

Copyright © 2026-present Agilebot Robotics Co., Ltd. 130/ 283

4.2 Robot Motion Control and Status | Agilebot Robot SDK

Motion.Payload.InterferenceCheckForPayloadldentify(double weight |,
Method Name
double angle)

Compatible robot Collaborative (Copper): v7.5.2.0+

software version Industrial (Bronze): Not supported

4.2.19.13 Entering Payload Identification State

Method Name Motion.Payload.PayloadldentifyStart()
Description Enters the payload identification state.
Request Parameters None

Return Value StatusCode: Result of function execution

. . Collaborative (Copper): v7.5.2.0+
Compatible robot software version)
Industrial (Bronze): Not supported

4.2.19.14 Exiting Payload Identification State

Method Name Motion.Payload.PayloadldentifyDone()
Description Exits the payload identification state.
Request Parameters None

Return Value StatusCode: Result of function execution

)) Collaborative (Copper): v7.5.2.0+
Compatible robot software version]
Industrial (Bronze): Not supported

4.2.19.15 Full Payload Identification Process

Method Name Motion.Payload.Payloadldentify(double weight = -1, double angle = 90)

o Complete payload identification process, including all the interfaces mentioned
Description) o o) .
above. For general payload identification, this interface is sufficient.

weight : double Payload weight (use -1 for unknown weight)
Request Parameters])
angle :double Allowed rotation angle of Axis 6 (30-90 degrees)

Copyright © 2026-present Agilebot Robotics Co., Ltd. 131/283

4.2 Robot Motion Control and Status | Agilebot Robot SDK

Method Name Motion.Payload.Payloadldentify(double weight = -1, double angle = 90)

PayloadInfo: Payload identification result
Return Value .)
StatusCode: Result of function execution

The returned payload can be added to the robot or saved to an existing
payload in the robot.
The full process steps are
Note 1. Enter payload identification state
2. Start payload identification
3. Get payload identification result
4. Exit payload identification state

Compatible robot Collaborative (Copper): v7.5.2.0+

software version Industrial (Bronze): Not supported

Example Code

Motion/Payloadldentify.cs

cs
using Agilebot.IR;

using Agilebot.IR.Motion;
using Agilebot.IR.Types;

public class PayloadIdentify

{
public static StatusCode Run(

string controllerlIP,

bool uselocalProxy = true

/1 [ZH] WIassEh R plas A

// [EN] Initialize the Agilebot robot

Arm controller = new Arm(
controllerIP,

useLocalProxy

)s
[/ [ZH] EEHEEEEPLEE A

// [EN] Connect to the Agilebot robot

StatusCode code = controller.ConnectSync();

Copyright © 2026-present Agilebot Robotics Co., Ltd. 132 /283

4.2 Robot Motion Control and Status | Agilebot Robot SDK

Console.WriteLine(
code != StatusCode.OK
? code.GetDescription()
: "IERERT)/Successfully connected. "

);

if (code != StatusCode.OK)
{

return code;

try

/7 [ZH] SREHLE AR
// [EN] Get robot mode
(UserOpMode opMode, StatusCode opCode) =
controller.GetOpMode();
if (opCode == StatusCode.OK)
{
Console.WriteLine(
$" 4 ETALEE AR 20/Current robot mode: {opMode}"
)3
if (opMode != UserOpMode.AUTO)
{
Console.WriteLine(
$" I EPAT LAHENLEE N B30T /Payload identification ex
ecution must be in automatic mode"
)

return StatusCode.OtherReason;

}
}
else
{

Console.WritelLine(

$"REH LA N /Failed to get robot mode: {opCode.GetDescri
ption()}"

)s

}

// [ZH] Fexilll 3%k 75 7K~
// [EN] Check if axis 3 is horizontal
double horizontalAngle;

Copyright © 2026-present Agilebot Robotics Co., Ltd. 133/283

4.2 Robot Motion Control and Status | Agilebot Robot SDK

(horizontalAngle, code) =
controller.Motion.Payload.CheckAxisThreeHorizontal();

if (code == StatusCode.OK)

{
Console.WritelLine(
$" 35K AR {horizontalAngle}"
)s
if (Math.Abs(horizontalAngle) > 1)
{
Console.WritelLine(
M 3K BRIV (-1~1), TOVREEAT S E
)s
return StatusCode.OtherReason;
}
}
else
{
Console.WriteLine(
$" K 3%H/K LM . {code.GetDescription()}"
)s
}

// [ZH] FRECGEIN AR ZS

// [EN] Get payload identification state

PayloadIdentifyState identifyState;

(identifyState, code) =
controller.Motion.Payload.GetPayloadIdentifyState();

if (code == StatusCode.OK)

{
Console.WritelLine(
$" UM ERAS . {identifyState}"
)3
}
else
{
Console.WritelLine(
$" IR BRI IR KM . {code.GetDescription()}"
)s
}

// [ZH] AT 5EBE M 5B € ke

// [EN] Execute complete payload identification process

Copyright © 2026-present Agilebot Robotics Co., Ltd. 134 /283

4.2 Robot Motion Control and Status | Agilebot Robot SDK

PayloadInfo payload;
(payload, code) =
controller.Motion.Payload.PayloadIdentify(
-1,
90
)s
if (code == StatusCode.OK)
{
Console.WriteLine (" S ZEMEKIh:");
Console.WritelLine(
$"fisEE: {payload.Weight}"
)s
Console.WritelLine(
$" i E . X={payload.MassCenter.X}, Y={payload.MassCenter.Y},
Z={payload.MassCenter.zZ}"
)s
Console.WritelLine(
$" B . LX={payload.InertiaMoment.LX}, LY={payload.InertiaMom
ent.LY}, LZ={payload.InertiaMoment.LZ}"

IE

/] [ZH] PRAEFEEINLE A

// [EN] Save payload to robot

payload.Id = 6;

code = controller.Motion.Payload.AddPayload(

payload
)3
if (code == StatusCode.OK)
{
Console.WriteLine(
"ORAF B EIHLAS A REh
)
}
else
{
Console.WritelLine(
$"RFE MK : {code.GetDescription()}"
)s
}
}
else
{

Copyright © 2026-present Agilebot Robotics Co., Ltd. 135/283

4.2 Robot Motion Control and Status | Agilebot Robot SDK

Console.WritelLine(
$" IR E KW : {code.GetDescription()}"

)s
}
}
catch (Exception ex)
{
Console.WritelLine(
$" PATIEFE R K E 5% /Exception occurred during execution: {ex.Messag
e}”
)s
code = StatusCode.OtherReason;
}
finally
{
/] [ZH] K&
// [EN] Close the connection
StatusCode disconnectCode =
controller.Disconnect();
Console.WritelLine(
disconnectCode != StatusCode.OK
? disconnectCode.GetDescription()
"Successfully disconnected."”
)3
}
return code;
}
}

Copyright © 2026-present Agilebot Robotics Co., Ltd. 136 /283

4.3 Robot Program Execution Class | Agilebot Robot SDK

4.3 Robot Program Execution Class

4.3.1 Executing a Specified Program

Method Name

Description

Request Parameters

Return Value

Execution.Start(string programName)

Starts execution of the specified program in the robot controller.

programName : string Name of the program to be executed
StatusCode: Program start operation execution result

Collaborative (Copper): v7.5.0.0+

Compatible robot software version

Industrial (Bronze): v7.5.0.0+

4.3.2 Stopping the Currently Executing Program

Method Name

Description

Request Parameters

Return Value

Compatible robot

software version

Execution.Stop(string programName = null)

Stops the currently executing program or stops the robot's current motion

command.

programName : string Name of the program to be stopped, default is null,

meaning stop the currently running program or motion command
StatusCode: Stop operation execution result

Collaborative (Copper): v7.5.0.0+

Industrial (Bronze): v7.5.0.0+

4.3.3 Returning Details of All Running Programs

Copyright © 2026-present Agilebot Robotics Co., Ltd.

137 /283

Method Name

Description

Request Parameters

Return Value

Compatible robot

software version

4.3 Robot Program Execution Class | Agilebot Robot SDK

Execution.AllRunningPrograms()

Gets detailed information of all running programs, including program IDs

and program names.
None

Dictionary<string, int>: List of running program IDs and program names

StatusCode: Get operation execution result

Collaborative (Copper): v7.5.0.0+
Industrial (Bronze): v7.5.0.0+

4.3.4 Pausing Program Execution

Method Name

Description

Request Parameters

Return Value

Compatible robot

software version

Execution.Pause(string programName = null)
Pauses the currently executing program or pauses the robot's current motion.

programName : string Name of the program to be paused, when not passed,

defaults to controlling the currently running program or executing action
StatusCode: Pause operation execution result

Collaborative (Copper): v7.5.0.0+
Industrial (Bronze): v7.5.0.0+

4.3.5 Resuming Program Execution

Method Name

Description

Request Parameters

Return Value

Execution.Resume(string programName)

Continues running a program in paused state or resumes the robot's paused

motion.

programName : string Name of the program to be resumed, when not passed,

defaults to controlling the currently running program or executing action

StatusCode: Resume operation execution result

Copyright © 2026-present Agilebot Robotics Co., Ltd.

138 /283

4.3 Robot Program Execution Class | Agilebot Robot SDK

Method Name Execution.Resume(string programName)
Compatible robot Collaborative (Copper): v7.5.0.0+
software version Industrial (Bronze): v7.5.0.0+

Example Code

Execution/ProgramExecution.cs

using Agilebot.IR;
using Agilebot.IR.Types;

public class ProgramExecution
{
/// <summary>
/17 WRFEFF AT e SRR D) e
/1] RAEREFPRIE AN BT RE AT 1A S B R A R
/// </summary>
public static StatusCode Run(
string controllerIP,

bool uselocalProxy = true

/] [ZH] WIEEATERRLES A

// [EN] Initialize the Agilebot robot

Arm controller = new Arm(
controllerIP,

useLocalProxy

g

/] [ZH] BEEAERHLESA
// [EN] Connect to the Agilebot robot
StatusCode code = controller.ConnectSync();
Console.WriteLine(
code != StatusCode.OK
? code.GetDescription()

"JERE KT /Successfully connected. "
)

if (code != StatusCode.OK)
{

Copyright © 2026-present Agilebot Robotics Co., Ltd.

cs

139/ 283

4.3 Robot Program Execution Class | Agilebot Robot SDK

return code;

try

Console.WritelLine(
"T AR AT SE B FE /Starting Program Execution Complete Flow"
)

/7 [ZH] RIS A B8 A%

// [EN] Get test file path

string file_user_program = GetTestFilePath(
"test_prog.xml"

IE

// [ZH] WEET A
// [EN] Set program name

string progName = "test_prog";

/] [ZH] AR P RERR St
// [EN] Upload user program file
code = controller.FileManager.Upload(
file_user_program,
FileType.UserProgram,
true
)3
if (code == StatusCode.OK)
{
Console.WriteLine(
$" FH PR SO EAE %Il /User Program File Upload Success: {progNa

me}

DE

else

Console.WritelLine(

$" F PR SO EAL R /User Program File Upload Failed: {code.Ge
tDescription()}"

)5

return code;

Copyright © 2026-present Agilebot Robotics Co., Ltd. 140/ 283

4.3 Robot Program Execution Class | Agilebot Robot SDK

// [ZH] &1%F
// [EN] Wait
Thread.Sleep(3000);

// [ZH] JAshHEF?

// [EN] Start program

code = controller.Execution.Start(progName);
if (code == StatusCode.OK)

{
Console.WritelLine(
$"F2)7 A 80 /Program Started Successfully: {progName}"
)s
¥
else
{
Console.WriteLine(
$" T E KM /Program Start Failed: {code.GetDescription()}"
)s
return code;
¥
Thread.Sleep(2000);

/7 [ZH] KRBT IEAEIB AT AR P A1 3E

// [EN] Get all running programs list

Dictionary<string, int> proglList;

(proglList, code) =
controller.Execution.AllRunningPrograms();

if (code == StatusCode.OK)

{
Console.WritelLine(
"SREUS AT R 4% I /Get Running Programs List Success"
)3
Console.WritelLine(
$" iz 1TFEF$E /Running Programs Count: {proglList.Count}"
)s
foreach (var prog in progList)
{
Console.WritelLine(
$" F&/#/Program: {prog.Key}, IRZS/Status: {prog.value}"
)s
}
}

Copyright © 2026-present Agilebot Robotics Co., Ltd. 141/ 283

4.3 Robot Program Execution Class | Agilebot Robot SDK

else

Console.WritelLine(
$"IRBUZ AT LR 51 2 M /Get Running Programs List Failed: {code.G
etDescription()}"
)s
return code;

}
Thread.Sleep(2000);

// [ZH] EERERF

// [EN] Pause program

code = controller.Execution.Pause(progName);
if (code == StatusCode.OK)

{
Console.WritelLine(
$"FE 7 B 15 i3 /Program Paused Successfully: {progName}"
)s
¥
else
{
Console.WritelLine(
$" R E{F R /Program Pause Failed: {code.GetDescription()}"
)3
return code;
¥
Thread.Sleep(2000);

/] [ZH] KB
// [EN] Resume program
code = controller.Execution.Resume(progName);

if (code == StatusCode.OK)

{
Console.WriteLine(
$"F2 K E 2 /Program Resumed Successfully: {progName}"
)s
}
else
{

Console.WritelLine(
$"FEFIKE KK /Program Resume Failed: {code.GetDescription()}"

)5

Copyright © 2026-present Agilebot Robotics Co., Ltd. 142 / 283

4.3 Robot Program Execution Class | Agilebot Robot SDK

return code;

}
Thread.Sleep(2000);

// [ZH] fFiERE T

// [EN] Stop program

code = controller.Execution.Stop(progName);
if (code == StatusCode.OK)

{
Console.WritelLine(
$" 2715 1L T /Program Stopped Successfully: {progName}"
)s
¥
else
{
Console.WritelLine(
$" P15 1Lk /Program Stop Failed: {code.GetDescription()}"
)s
return code;
¥

/7 [ZH] MHERH P RE R SO

// [EN] Delete user program file

code = controller.FileManager.Delete(
progName,

FileType.UserProgram

)s
if (code == StatusCode.OK)
{
Console.WritelLine(
$" F P AR P SCHE MR i E /User Program File Delete Success: {progNa
me}ll
)s
}
else
{
Console.WritelLine(
$"H P RER UM BR R /User Program File Delete Failed: {code.Ge
tDescription()}"
)
return code;
}

Copyright © 2026-present Agilebot Robotics Co., Ltd. 143/ 283

4.3 Robot Program Execution Class | Agilebot Robot SDK

Console.WriteLine(
"TEFHAT SRR AELE R /Program Execution Complete Flow Test Complete

d"
)s
}
catch (Exception ex)
{
Console.WritelLine(
$"PATIEFEH R L S /Exception occurred during execution: {ex.Messag
e}”
)s
code = StatusCode.OtherReason;
}
finally
{
/] [ZH] KPESE
// [EN] Close the connection
StatusCode disconnectCode =
controller.Disconnect();
if (disconnectCode != StatusCode.OK)
{
Console.WriteLine(
disconnectCode.GetDescription()
)3
if (code == StatusCode.OK)
code = disconnectCode;
}
}

return code;

/// <summary>
/1] FFEtest_files CFJerh et ik AR <1 75 1%
/17 EORURSRBCSRTRR T H 3% T Hitest_files Uk S8 42
/// </summary>
private static string GetTestFilePath(string fileName)
{
// [ZH] SRECHHETRE RN H %
// [EN] Get current assembly directory

string? codeFilePath =

Copyright © 2026-present Agilebot Robotics Co., Ltd. 144 | 283

4.3 Robot Program Execution Class | Agilebot Robot SDK

new System.Diagnostics.StackTrace(true)

.GetFrame(9)
?.GetFileName();
if (string.IsNullOrEmpty(codeFilePath))
{
throw new InvalidOperationException(
"TCVESRE ARG A B 4% /Cannot get current file path”
)s
}

string? codeDirectory = Path.GetDirectoryName(

codeFilePath

)s

if (string.IsNullOrEmpty(codeDirectory))

{
throw new InvalidOperationException(

"TIEIRECY AT H 4845 /Cannot get current directory path”

Ik

}

// [ZH] Hiftest_files CfFikiz
// [EN] Build test_files folder path
string testFilesDirectory = Path.Combine(
codeDirectory,
"test_files"
)
// [ZH] WIS e BBk AT
// [EN] Build complete file path
string filePath = Path.Combine(
testFilesDirectory,
fileName
)

return filePath;

4.3.6 Executing a BAS Script Program

Copyright © 2026-present Agilebot Robotics Co., Ltd. 145/ 283

4.3 Robot Program Execution Class | Agilebot Robot SDK

Method Name Execution.ExecuteBasScript(BasScript script)
Description Executes a user-defined BAS script program.

Request Parameters script : BasScript User-defined BAS script program
Return Value StatusCode: Script execution operation execution result

- BAS script program pause, resume, and stop methods are the same as
ote
regular programs.

) Collaborative (Copper): v7.5.2.0+
Compatible robot software)
Industrial (Bronze): Not supported

Industrial Robot: v7.6.0.0+

version

Example Code

Execution/ExecuteBasScript.cs

cs
using Agilebot.IR;

using Agilebot.IR.BasScript;
using Agilebot.IR.Execution;

using Agilebot.IR.Types;

public class ExecuteBasScript

{

/// <summary>
/// WRAATBasHIATh e
/17 BRAUERETS BRINPAT B & A HIKT . s S A BRAF IBas Il A
/// </summary>
public static StatusCode Run(
string controllerIP,

bool uselLocalProxy = true

/1 [ZH] Wl sEh R plas A

// [EN] Initialize the Agilebot robot

Arm controller = new Arm(
controllerIP,

useLocalProxy

);

Copyright © 2026-present Agilebot Robotics Co., Ltd. 146 / 283

4.3 Robot Program Execution Class | Agilebot Robot SDK

[/ [ZH] EEFEDRPLASEA
// [EN] Connect to the Agilebot robot
StatusCode code = controller.ConnectSync();
Console.WriteLine(
code != StatusCode.OK
? code.GetDescription()
. "IERERT)/Successfully connected.”

);

if (code != StatusCode.OK)
{

return code;

try

Console.WriteLine(
"F i ATBas IAFE P /Starting Execute BasScript"
)5

// [ZH] BUEBASIHIATEF
// [EN] Create BAS script program

BasScript script = new BasScript("test_bas");

/7 [ZH] EInsfA A b 2 i A
// [EN] Add conditional statement to script
code = script.Logical.IF(

RegisterType.R,

1,

OtherType.VALUE,

(%]
)3
if (code != StatusCode.OK)
{

Console.WritelLine(

$ AN IS AEHIT e /Add Conditional Statement Failed: {code.GetDe
scription()}"

)s

return code;
}

// [ZH] @SInisshis il 2 A

Copyright © 2026-present Agilebot Robotics Co., Ltd. 147 / 283

4.3 Robot Program Execution Class | Agilebot Robot SDK

// [EN] Add motion control to script
BasScript.ExtraParam param =
new BasScript.ExtraParam();
param.Acceleration(80);
code = script.Motion.MoveJoint(
MovePoseType.PR,
1,
SpeedType.VALUE,
30,
SmoothType.SD,
10,
extraParam: param
)s
if (code != StatusCode.OK)
{
Console.WritelLine(
$" A iz sh{%EH| M /Add Motion Control Failed: {code.GetDescripti
on()}"
)3

return code;

/7 [ZH] EInVGAHE R 1 2 A
// [EN] Add assignment operation to script
code = script.AssignValue(AssignType.R, 1, 99);
if (code != StatusCode.OK)
{

Console.WritelLine(

$" AR B E R /Add Assignment Operation Failed: {code.GetDes
cription()}"
)3

return code;

/] [ZH] SEAGRATHIT

// [EN] End conditional statement
code = script.Logical.END _IF();
if (code != StatusCode.OK)

{

Console.WritelLine(
$"AE RS I /End Conditional Statement Failed: {code.GetDe

scription()}"

Copyright © 2026-present Agilebot Robotics Co., Ltd. 148/ 283

statements,

O}

}

4.3 Robot Program Execution Class | Agilebot Robot SDK

)5

return code;

// [ZH] FEfe bE— kg R
// [EN] Wait for previous test to end
Thread.Sleep(1000);

// [ZH] $ATBASHIATLF
// [EN] Execute BAS script program

code = controller.Execution.ExecuteBasScript(

script
)
if (code == StatusCode.OK)
{

Console.WritelLine(
"BASHHIAFAT T /Execute BasScript Success”
)s
Console.WritelLine(
AL Ak I B BhiE AR EERE/Script includes conditional

motion control and assignment operations"

)3
¥
else
{
Console.WritelLine(
$"BASIHIA AT KM /Execute BasScript Failed: {code.GetDescription
)3
}
Console.WriteLine(
"HATBas AN 5E il /Execute BasScript Test Completed"
)s

catch (Exception ex)

{

e}"”

Console.WritelLine(

$"PATIEFE R A FH /Exception occurred during execution: {ex.Messag

);

code = StatusCode.OtherReason;

Copyright © 2026-present Agilebot Robotics Co., Ltd.

149 /283

4.3 Robot Program Execution Class | Agilebot Robot SDK

}
finally
{
/] [ZH] KRMEEZ
// [EN] Close the connection
StatusCode disconnectCode =
controller.Disconnect();
if (disconnectCode != StatusCode.OK)
{
Console.WritelLine(
disconnectCode.GetDescription()
)s
if (code == StatusCode.OK)
code = disconnectCode;
}
}

return code;

Copyright © 2026-present Agilebot Robotics Co., Ltd. 150/ 283

4.4 Program Information Read/Write Operations | Agilebot Robot SDK

4.4 Program Information Read/Write Operations

4.4.1 Reading the Value of a Specified Pose in a Program

ProgramPoses.Read(string programName , int index , FileType ft =
Method Name .
FileType.UserProgram)

Description Reads the pose data at the specified index in the specified program.

programName : string Specified program name
Request Parameters index :int Specified pose index

ft : FileType File type

ProgramPose Robot pose data in the program
Return Value _)
StatusCode: Read operation execution result

Compatible robot software Collaborative (Copper): v7.5.0.0+

version Industrial (Bronze): v7.5.0.0+

Example Code

ProgramPoses/ReadProgramPose.cs

cs
using Agilebot.IR;

using Agilebot.IR.ProgramPoses;

using Agilebot.IR.Types;

public class ReadProgramPose

{
public static StatusCode Run(

string controllerIP,

bool uselLocalProxy = true

// [ZH] VIR R LA A
// [EN] Initialize the Agilebot robot

Arm controller = new Arm(

Copyright © 2026-present Agilebot Robotics Co., Ltd. 151/ 283

4.4 Program Information Read/Write Operations | Agilebot Robot SDK

controllerIP,

uselLocalProxy

)5

// [ZH] EEEDRPLASA
// [EN] Connect to the Agilebot robot
StatusCode code = controller.ConnectSync();
Console.WriteLine(
code != StatusCode.OK
? code.GetDescription()

: "HERERIN/Successfully connected. ™
)

if (code != StatusCode.OK)
{

return code;

try

/] [ZH] WEREF SR 2 5]
// [EN] Set program name and pose index
string progName = "test_prog";

int index = 1;

// [ZH] BEBUREREF PR E R A
// [EN] Read specified pose value in specified program
ProgramPose pose;

(pose, code) = controller.ProgramPoses.Read(

progName,
index
)3
if (code == StatusCode.OK)
{
Console.WritelLine(
"SEEURE A S T /Read Program Pose Success"
)s
Console.WriteLine(
$" 1 %5 5. /Pose Info: {pose}"
)s
}
else

Copyright © 2026-present Agilebot Robotics Co., Ltd. 152 / 283

4.4 Program Information Read/Write Operations | Agilebot Robot SDK

{
Console.WritelLine(
$" EEEURE AL kM /Read Program Pose Failed: {code.GetDescript
ion()}"
)s
}
}
catch (Exception ex)
{
Console.WritelLine(
$ AT G R A4 SRR /Exception occurred during execution: {ex.Messag
e}”
)s
code = StatusCode.OtherReason;
}
finally
{
/] [ZH] RKHAZER
// [EN] Close the connection
StatusCode disconnectCode =
controller.Disconnect();
if (disconnectCode != StatusCode.OK)
{
Console.WritelLine(
disconnectCode.GetDescription()
)3
if (code == StatusCode.OK)
code = disconnectCode;
}
}
return code;
}
}

4.4.2 Wirting the Value of a Specified Pose in a Program

Copyright © 2026-present Agilebot Robotics Co., Ltd. 153 /283

Method Name

Description

Request Parameters

Return Value

Compatible robot

software version

Example Code

4.4 Program Information Read/Write Operations | Agilebot Robot SDK
ProgramPoses.Write(string programName , int index , ProgramPose
value , FileType ft = FileType.UserProgram)
Modifies the pose data at the specified index in the specified program.

programName : string Specified program name
index :int Specified pose index
value : ProgramPose Robot pose data in the program

ft : FileType File type
StatusCode: Write operation execution result

Collaborative (Copper): v7.5.0.0+
Industrial (Bronze): v7.5.0.0+

ProgramPoses/WriteProgramPose.cs

using Agilebot.IR;

using Agilebot.IR.ProgramPoses;

using Agilebot.IR.Types;

public class WriteProgramPose

{

public static StatusCode Run(

string controllerIP,

bool uselLocalProxy = true

/1 [ZH] Wl sEh R plas A
// [EN] Initialize the Agilebot robot

Arm controller = new Arm(

controllerIP,

useLocalProxy

);

// [ZH] EEEIRNLAEN
// [EN] Connect to the Agilebot robot

StatusCode code = controller.ConnectSync();

Console.WritelLine(

Copyright © 2026-present Agilebot Robotics Co., Ltd.

cs

154 /283

4.4 Program Information Read/Write Operations | Agilebot Robot SDK

code != StatusCode.OK
? code.GetDescription()
: "R /Successfully connected. "
)

if (code != StatusCode.OK)
{

return code;

try

// [ZH] WEREF BRI [R5
// [EN] Set program name and pose index
string progName = "test_prog";

int index = 2;

// [ZH] AERBENLAL L 55
// [EN] Generate random pose
ProgramPose rndPose =

ProgramPose.GenerateRandomPose(index);

/] [ZH] BBURERF iR EAM L FE
// [EN] Write specified pose value in specified program
code = controller.ProgramPoses.Write(
progName,
index,
rndPose
)3
if (code == StatusCode.OK)
{
Console.WriteLine(
"B NFEJT AL AT /Write Program Pose Success"
)s

else

Console.WritelLine(
$" B ANFEFALL SR /Write Program Pose Failed: {code.GetDescrip
tion()}"
)s

Copyright © 2026-present Agilebot Robotics Co., Ltd.

155/ 283

4.4 Program Information Read/Write Operations | Agilebot Robot SDK

}
catch (Exception ex)
{
Console.WritelLine(
$ AT IR G R A 7R /Exception occurred during execution: {ex.Messag
e}”
)s
code = StatusCode.OtherReason;
}
finally
{
/] [ZH] KPS
// [EN] Close the connection
StatusCode disconnectCode =
controller.Disconnect();
if (disconnectCode != StatusCode.OK)
{
Console.WriteLine(
disconnectCode.GetDescription()
)3
if (code == StatusCode.OK)
code = disconnectCode;
}
}
return code;
}
}

4.4.3 Adding a Pose to a Specified Program

ProgramPoses.Add(string programName , int index , ProgramPose
Method Name . .
value , FileType ft = FileType.UserProgram)

Description Adds pose data at the specified index position in the specified program.

Request Parameters programName : string Specified program name

index :int Specified pose index

Copyright © 2026-present Agilebot Robotics Co., Ltd. 156 /283

4.4 Program Information Read/Write Operations | Agilebot Robot SDK

ProgramPoses.Add(string programName , int index , ProgramPose
Method Name . .
value , FileType ft = FileType.UserProgram)

value : ProgramPose Robot pose data in the program

ft : FileType File type

Return Value StatusCode: Add operation execution result
Compatible robot Collaborative (Copper): v7.5.0.0+
software version Industrial (Bronze): v7.5.0.0+

Example Code

ProgramPoses/AddProgramPose.cs

cs
using Agilebot.IR;

using Agilebot.IR.ProgramPoses;

using Agilebot.IR.Types;

public class AddProgramPose

{
public static StatusCode Run(

string controllerlIP,

bool uselocalProxy = true

/7 [ZH] WIERHEERRALES A

// [EN] Initialize the Agilebot robot

Arm controller = new Arm(
controllerIP,

uselLocalProxy

)5

/7 [ZH] EFZFEDRHLEA
// [EN] Connect to the Agilebot robot
StatusCode code = controller.ConnectSync();
Console.WriteLine(
code != StatusCode.OK
? code.GetDescription()

: "IN /Successfully connected. ™
)

Copyright © 2026-present Agilebot Robotics Co., Ltd. 157/ 283

4.4 Program Information Read/Write Operations | Agilebot Robot SDK

if (code != StatusCode.OK)
{

return code;

try

/] [ZH] BEREFAIRAALE R 5
// [EN] Set program name and pose index
string progName = "test_prog";

int index = 3;

// [ZH] AERBENLAL L 5
// [EN] Generate random pose
ProgramPose rndPose =

ProgramPose.GenerateRandomPose(index);

/7 [ZH] #INREREF i fLE i
// [EN] Add specified pose in specified program
code = controller.ProgramPoses.Add(
progName,
index,
rndPose
)3
if (code == StatusCode.OK)
{
Console.WriteLine(
"INSINRE R AL S5 %) /Add Program Pose Success"
)3

else

Console.WritelLine(
$"INIIRE AL kM /Add Program Pose Failed: {code.GetDescripti

on()}"
)s

}

catch (Exception ex)

{

Console.WritelLine(

$"PATIEFE R A FH /Exception occurred during execution: {ex.Messag

Copyright © 2026-present Agilebot Robotics Co., Ltd. 158 /283

4.4 Program Information Read/Write Operations | Agilebot Robot SDK

e}"”
)s
code = StatusCode.OtherReason;
}
finally
{
/] [ZH] KRMEEZ
// [EN] Close the connection
StatusCode disconnectCode =
controller.Disconnect();
if (disconnectCode != StatusCode.OK)
{
Console.WritelLine(
disconnectCode.GetDescription()
)s
if (code == StatusCode.OK)
code = disconnectCode;
}
}
return code;
}
}

4.4.4 Deleting a Specified Pose from a Program

ProgramPoses.Delete(string programName , int index , FileType ft =
Method Name)
FileType.UserProgram)

Description Deletes the pose at the specified index in the specified program.

programName : string Specified program name
Request Parameters index :int Specified pose index

ft : FileType File type

Return Value StatusCode: Delete operation execution result
Compatible robot Collaborative (Copper): v7.5.0.0+
software version Industrial (Bronze): v7.5.0.0+

Copyright © 2026-present Agilebot Robotics Co., Ltd. 159 /283

4.4 Program Information Read/Write Operations | Agilebot Robot SDK

Example Code

ProgramPoses/DeleteProgramPose.cs

cs
using Agilebot.IR;

using Agilebot.IR.ProgramPoses;

using Agilebot.IR.Types;

public class DeleteProgramPose
{
public static StatusCode Run(
string controllerIP,

bool uselocalProxy = true

/7 [ZH] WIIRHEERRAALES A

// [EN] Initialize the Agilebot robot

Arm controller = new Arm(
controllerIP,

uselLocalProxy

)5

/] [ZH] BEEAERHLEA
// [EN] Connect to the Agilebot robot
StatusCode code = controller.ConnectSync();
Console.WriteLine(
code != StatusCode.OK
? code.GetDescription()
: "EHHIN/Successfully connected."

g

if (code != StatusCode.OK)
{

return code;

try
/] [ZH] WEREF IR FE 5]

// [EN] Set program name and pose index

string progName = "test_prog";

Copyright © 2026-present Agilebot Robotics Co., Ltd. 160/ 283

4.4 Program Information Read/Write Operations | Agilebot Robot SDK
int index = 3;
// [ZH] MER$EEREFP 4 8 AL 4

// [EN] Delete specified pose in specified program

code = controller.ProgramPoses.Delete(

progName,
index
)
if (code == StatusCode.OK)
{
Console.WritelLine(
"I R A 2 S T /Delete Program Pose Success"
)
¥
else
{
Console.WriteLine(
$" MR AL % S 2k /Delete Program Pose Failed: {code.GetDescri
ption()}"
)
¥
}
catch (Exception ex)
{
Console.WritelLine(
$" PATIERE R K 4 % /Exception occurred during execution: {ex.Messag
e}ll
)
code = StatusCode.OtherReason;
}
finally
{

/] [ZH] RPA&ESE

// [EN] Close the connection

StatusCode disconnectCode =
controller.Disconnect();

if (disconnectCode != StatusCode.OK)

{
Console.WritelLine(

disconnectCode.GetDescription()

)s
if (code == StatusCode.OK)

Copyright © 2026-present Agilebot Robotics Co., Ltd. 161/ 283

4.4 Program Information Read/Write Operations | Agilebot Robot SDK

code = disconnectCode;

return code;

4.4.5 Retrieving All Poses from a Specified Program

ProgramPoses.ReadAllPoses(string programName , FileType ft =
Method Name .
FileType.UserProgram)

Description Gets all pose information from the specified program.

programName : string Specified program name
Request Parameters))
ft : FileType File type

List<ProgramPose>: Pose data list
Return Value])
StatusCode: Get operation execution result

Compatible robot software Collaborative (Copper): v7.5.0.0+

version Industrial (Bronze): v7.5.0.0+

Example Code

ProgramPoses/ReadAllProgramPoses.cs

cs
using Agilebot.IR;

using Agilebot.IR.ProgramPoses;

using Agilebot.IR.Types;

public class ReadAllProgramPoses

{
public static StatusCode Run(

string controllerlIP,

bool uselocalProxy = true

Copyright © 2026-present Agilebot Robotics Co., Ltd. 162 / 283

4.4 Program Information Read/Write Operations | Agilebot Robot SDK

/1 [ZH] Wl HsEh s plas A

// [EN] Initialize the Agilebot robot

Arm controller = new Arm(
controllerIP,

useLocalProxy

);

/1 [ZH] BEESEFLE A
// [EN] Connect to the Agilebot robot
StatusCode code = controller.ConnectSync();
Console.WritelLine(
code != StatusCode.OK
? code.GetDescription()
: "HEERERLY)/Successfully connected. ™

)E

if (code != StatusCode.OK)
{

return code;

try

// [ZH] BT 2K
// [EN] Set program name

string progName = "test_prog";

/7 [ZH] BEBURERF T ITE AL A
// [EN] Read all poses in specified program
List<ProgramPose> poses;
(poses, code) =
controller.ProgramPoses.ReadAllPoses(
progName
)s
if (code == StatusCode.OK)
{
Console.WritelLine(
" EAT A FE AL 5 Y /Read ALl Program Poses Success"
)s
Console.WriteLine(

$" % S BE /Number of poses: {poses.Count}"

Copyright © 2026-present Agilebot Robotics Co., Ltd. 163 /283

4.4 Program Information Read/Write Operations | Agilebot Robot SDK

)5

for (int i = @; i < poses.Count; i++)

{
Console.WritelLine(
$ AL {1 + 1}/Pose {i + 1}: {poses[i]}"
)s
}
}
else
{
Console.WritelLine(
$ "L HUT A R A 45 5 U /Read ALl Program Poses Failed: {code.Get
Description()}"
)s
}
}
catch (Exception ex)
{
Console.WritelLine(
$"PATIE R K E W /Exception occurred during execution: {ex.Messag
e}
)3
code = StatusCode.OtherReason;
}
finally
{
/] [ZH] K&
// [EN] Close the connection
StatusCode disconnectCode =
controller.Disconnect();
if (disconnectCode != StatusCode.OK)
{
Console.WritelLine(
disconnectCode.GetDescription()
)s
if (code == StatusCode.OK)
code = disconnectCode;
}
}

return code;

Copyright © 2026-present Agilebot Robotics Co., Ltd. 164 / 283

4.4 Program Information Read/Write Operations | Agilebot Robot SDK

4.4.6 Converting Pose Types in Robot Programs

Method Name ProgramPoses.ConvertPose(ProgramPose pose, PoseType toType)

Converts robot poses in the program between joint coordinates and

Description . _
Cartesian space coordinates.

pose :ProgramPose Robot pose data in the program
Request Parameters)))
toType : PoseType Desired coordinate type after conversion

ProgramPose: Converted pose data
Return Value)))
StatusCode: Conversion operation execution result

Compatible robot Collaborative (Copper): v7.5.0.0+

software version Industrial (Bronze): v7.5.0.0+

Example Code

ProgramPoses/ConvertProgramPose.cs

cs
using Agilebot.IR;

using Agilebot.IR.ProgramPoses;

using Agilebot.IR.Types;

public class ConvertProgramPose

{
public static StatusCode Run(

string controllerIP,

bool uselLocalProxy = true

// [ZH] PIsHFESRALas A
// [EN] Initialize the Agilebot robot
Arm controller = new Arm(

controllerIP,

Copyright © 2026-present Agilebot Robotics Co., Ltd. 165 /283

4.4 Program Information Read/Write Operations | Agilebot Robot SDK

uselLocalProxy

)5

// [ZH] EEEDRPLASA
// [EN] Connect to the Agilebot robot
StatusCode code = controller.ConnectSync();
Console.WriteLine(
code != StatusCode.OK
? code.GetDescription()
: "HEERERLY)/Successfully connected. ™

)s

if (code != StatusCode.OK)
{

return code;

try

[/ [ZH] WERF AL S RT
// [EN] Set program name and pose index
string progName = "test_prog";

int cartIndex = 1;

/] [ZH] SEiell— M s
// [EN] First read a pose
ProgramPose cartPose;

(cartPose, code) = controller.ProgramPoses.Read(

progName,
cartIndex
)3
if (code != StatusCode.OK)
{
Console.WritelLine(
$" SLHUAT % 5 R /Read Pose Failed: {code.GetDescription()}"
)s
return code;
}

[/ [ZH] HE3hiide iR A (NFE AR IR ARHR e 4 D5 AL)
// [EN] Convert pose type (from Cartesian to Joint coordinates)

ProgramPose pose;

Copyright © 2026-present Agilebot Robotics Co., Ltd. 166 /283

4.4 Program Information Read/Write Operations | Agilebot Robot SDK

(pose, code) =
controller.ProgramPoses.ConvertPose(
cartPose,

PoseType.Joint

)s
if (code == StatusCode.OK)
{
Console.WritelLine(
"L A 4 S D) /Convert Program Pose Success"
)s
Console.WritelLine(
$" Eahfi 4 /Original Pose: {cartPose}"
)s
Console.WritelLine(
$" 45 1 4% /Converted Pose: {pose}"
)s
¥
else
{
Console.WritelLine(
$ " FE TR P AL 1 I/ Convert Program Pose Failed: {code.GetDescr
iption()}"
)s
¥
¥
catch (Exception ex)
{
Console.WriteLine(
$"PATIERE K /Exception occurred during execution: {ex.Messag
e}l'
)s
code = StatusCode.OtherReason;
}
finally
{

/] [ZH] RKHEE

// [EN] Close the connection

StatusCode disconnectCode =
controller.Disconnect();

if (disconnectCode != StatusCode.OK)

{

Console.WritelLine(

Copyright © 2026-present Agilebot Robotics Co., Ltd. 167 /283

4.4 Program Information Read/Write Operations | Agilebot Robot SDK
disconnectCode.GetDescription()
)

if (code == StatusCode.OK)

code = disconnectCode;

return code;

Copyright © 2026-present Agilebot Robotics Co., Ltd. 168/ 283

4.5 10 Signals | Agilebot Robot SDK

4.5 10 Signals

4.5.1 Reading the Value of a Specified Type and Port 10

Method Name Signals.Read(SignalType type ,int index)
Description Reads the 10 signal value of the specified type and port.

type : SignalType 10 signal type to read

Request Parameters]])
index :int 1O port index to read, starting from 1

int: 10 signal value, 1 represents high level, 0 represents low level

Return Value _ .
StatusCode: Read operation execution result

_ . Collaborative (Copper): v7.5.0.0+
Compatible robot software version]
Industrial (Bronze): v7.5.0.0+

Example Code

Signals/ReadSignal.cs

cs
using Agilebot.IR;

using Agilebot.IR.Types;

public class ReadSignal
{
public static StatusCode Run(
string controllerIP,

bool uselocalProxy = true

/1 [ZH] WIEEHAER RIS A

// [EN] Initialize the Agilebot robot

Arm controller = new Arm(
controllerlIP,

useLocalProxy

g

Copyright © 2026-present Agilebot Robotics Co., Ltd. 169 /283

4.5 10 Signals | Agilebot Robot SDK

/1 [ZH] EEFEDRLAE A
// [EN] Connect to the Agilebot robot
StatusCode code = controller.ConnectSync();
Console.WriteLine(
code != StatusCode.OK

? code.GetDescription()

: "IERERT)/Successfully connected.”
)

if (code != StatusCode.OK)
{

return code;

try

// [ZH] WEIOfESHRMMET
// [EN] Set IO signal type and index
SignalType type = SignalType.DI;

int index = 1;

/7 [ZH] BEEURE R4 2 i 1 TORE
// [EN] Read specified type and port IO value
int res;

(res, code) = controller.Signals.Read(

type,

index
)s
if (code == StatusCode.OK)
{

Console.WritelLine(
"I2ILI0f5 5 %I /Read Signal Success"
)s
Console.WritelLine(
$"{type}: {index} [J{iN/has value {res}"
)s
Console.WritelLine(
$" {55k /Signal Status: {(res == 1 ? "&HTF/High Level" : "{ik
H°F/Low Level")}"
)s

Copyright © 2026-present Agilebot Robotics Co., Ltd. 170/ 283

4.5 10 Signals | Agilebot Robot SDK

else

Console.WritelLine(
$" 2 ELIOfE 5 K /Read Signal Failed: {code.GetDescription()}"

)s
}
}
catch (Exception ex)
{
Console.WritelLine(
$ AT G R A4 SRR /Exception occurred during execution: {ex.Messag
e}”
)s
code = StatusCode.OtherReason;
}
finally
{
/] [ZH] RKHAZER
// [EN] Close the connection
StatusCode disconnectCode =
controller.Disconnect();
if (disconnectCode != StatusCode.OK)
{
Console.WritelLine(
disconnectCode.GetDescription()
)3
if (code == StatusCode.OK)
code = disconnectCode;
}
}
return code;
}
}

4.5.2 Writing the Value of a Specified Type and Port IO

Copyright © 2026-present Agilebot Robotics Co., Ltd. 171/ 283

4.5 10 Signals | Agilebot Robot SDK

Method Name Signals.Write(SignalType type , int index , double value)
Description Writes the 10 signal value of the specified type and port.

type : SignalType IO signal type to write
index :int 10O port index to write, starting from 1
Request Parameters)))
value :double Signal value to write, 1 represents high level, 0

represents low level

Return Value StatusCode: Write operation execution result
Compatible robot software Collaborative (Copper): v7.5.0.0+

version Industrial (Bronze): v7.5.0.0+

Note UI/UO signals can only be read, not written

Example Code

Signals/WriteSignal.cs

cs
using Agilebot.IR;

using Agilebot.IR.Types;

public class WriteSignal
{
public static StatusCode Run(
string controllerIP,

bool uselocalProxy = true

/1 [ZH] Wl HTEh R pLas A

// [EN] Initialize the Agilebot robot

Arm controller = new Arm(
controllerIP,

uselLocalProxy

)5

/1 [ZH] EEFEDRLAE A
// [EN] Connect to the Agilebot robot
StatusCode code = controller.ConnectSync();
Console.WriteLine(

code != StatusCode.OK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 172/ 283

4.5 10 Signals | Agilebot Robot SDK

? code.GetDescription()
. "IERAT)/Successfully connected.”

)5

if (code != StatusCode.OK)
{

return code;

try

// [ZH] WEIOfFSRA, RIIAE

// [EN] Set IO signal type, index and value
SignalType type = SignalType.DO;

int index = 1;

int value = 1;

// [ZH] B85E KRR E b H I0KE
// [EN] Write specified type and port IO value

code = controller.Signals.Write(

type,

index,

value
)3
if (code == StatusCode.OK)
{

Console.WritelLine(
"5 NIOf5 5 M /Write Signal Success"
)3
Console.WritelLine(
$"{type}: {index} & & N/set to value {value}"
)3
Console.WritelLine(
$"{E5IKE&/Signal Status: {(value == 1 ? "/ H - F-/High Level"
"fKHEF/Low Level™)}"
)s

else

Console.WritelLine(
$" 5 NIOfE 5 KM /Write Signal Failed: {code.GetDescription()}"
)s

Copyright © 2026-present Agilebot Robotics Co., Ltd. 173 /283

4.5 10 Signals | Agilebot Robot SDK

}
}
catch (Exception ex)
{
Console.WritelLine(
$"PATIEFE R K E % /Exception occurred during execution: {ex.Messag
e}r"
)s
code = StatusCode.OtherReason;
}
finally
{
/] [ZH] RAER
// [EN] Close the connection
StatusCode disconnectCode =
controller.Disconnect();
if (disconnectCode != StatusCode.OK)
{
Console.WritelLine(
disconnectCode.GetDescription()
)3
if (code == StatusCode.OK)
code = disconnectCode;
}
}
return code;
}
}

4.5.3 Batch Write DO Signals

Method Name Signals.MultiWrite(SignalType type , List<int> ioData)
Description Batch write multiple DO ports with a flattened list of port/value pairs.
Request Parameters type : SignalType DO only

ioData : List<int> like [portl, statel, port2, state2, ..] , length must be

Copyright © 2026-present Agilebot Robotics Co., Ltd. 174/ 283

4.5 10 Signals | Agilebot Robot SDK

Method Name Signals.MultiWrite(SignalType type , List<int> ioData)
even

Return Value StatusCode: write result

Compatible robot software Collaborative (Copper): v7.5.0.0+

version Industrial (Bronze): v7.5.0.0+

Not Only DO supports batch write; UI/UO are read-only, DI/RI support
ote
single-point read only

Example Code

cs
using Agilebot.IR;

using Agilebot.IR.Types;

public class Test

{
public static async Task Main()

{
string controllerIP = "10.27.1.254";

Arm controller = new Arm(controllerIP);
StatusCode code = await controller.Connect();
Console.WritelLine(code != StatusCode.OK ? code.GetDescription() : "Successf

ully connected.");

// Batch write DO1=1, DO02=0

code = controller.Signals.MultiWrite(SignalType.DO, new List<int> { 1, 1,
2, 0 });

Console.WritelLine(code != StatusCode.OK ? code.GetDescription() : "MultiWri

te Success");

code = controller.Disconnect();
Console.WriteLine(code != StatusCode.OK ? code.GetDescription() : "Successf

ully disconnected.”);

}

Copyright © 2026-present Agilebot Robotics Co., Ltd. 175/ 283

4.5 10 Signals | Agilebot Robot SDK

4.5.4 Batch Read DO Signals

Method Name

Description

Request Parameters

Return Value

Compatible robot software

version

Note

Example Code

using Agilebot.IR;
using Agilebot.IR.Types;

public class Test

{

Signals.MultiRead(SignalType type , List<int> indexes)

Batch read multiple DO ports; returned values align with the input

order.

type : SignalType DO only

indexes : List<int> ports to read, at least one index required
List<int> values (ordered as input) plus StatusCode

Collaborative (Copper): v7.5.0.0+
Industrial (Bronze): v7.5.0.0+

Only DO supports batch read; UI/UO are read-only, DI/RI support

single-point read only

public static async Task Main()

{

string controllerIP = "10.27.1.254";

Arm controller =

StatusCode code =

Console.WritelLine(code != StatusCode.OK ? code.GetDescription() : "Successf

ully connected.");

// Batch read DO1,

(List<int> values, StatusCode readCode) = controller.Signals.MultiRead(Sign

new Arm(controllerIP);

await controller.Connect();

D02

alType.DO, new List<int> { 1, 2 });
if (readCode == StatusCode.OK)

{

Console.WritelLine($"MultiRead Success: DOl={values[©]}, DO2={values

[113");

Copyright © 2026-present Agilebot Robotics Co., Ltd.

cs

176 /283

4.5 10 Signals | Agilebot Robot SDK

code = controller.Disconnect();
Console.WritelLine(code != StatusCode.OK ? code.GetDescription() : "Successf

ully disconnected.");

}

Copyright © 2026-present Agilebot Robotics Co., Ltd. 177 /1 283

4.6 Register Information | Agilebot Robot SDK

4.6 Register Information

4.6.1 R Numeric Register Operations

4.6.1.1 Reading the Value of an R Register

Method Name
Description

Request Parameters

Return Value

Compatible robot software version

Registers.Read_R(int index)
Reads the value of an R numeric register.
index :int R register number to read

double: R register numeric value

StatusCode: Read operation execution result

Collaborative (Copper): v7.6.0.1+
Industrial (Bronze): v7.6.0.0+

4.6.1.2 Writing the Value of an R Register

Method Name

Description
Request Parameters
Return Value

Compatible robot software version

4.6.1.3 Deleting an R Register

Copyright © 2026-present Agilebot Robotics Co., Ltd.

Registers.Write_R(int index , double value)
Writes the value of an R numeric register.

index :int R register number to write

value :double R register numeric value to write
StatusCode: Write operation execution result

Collaborative (Copper): v7.6.0.1+
Industrial (Bronze): v7.6.0.0+

178 /283

4.6 Register Information | Agilebot Robot SDK

Method Name Registers.Delete_R(int index)

Description Deletes the specified R numeric register.
Request Parameters index :int R register number to delete
Return Value StatusCode: Delete operation execution result

Collaborative (Copper): v7.5.0.0+

Compatible robot software version]
Industrial (Bronze): v7.5.0.0+

Example Code

Registers/RRegisterOperations.cs

cs
using Agilebot.IR;

using Agilebot.IR.Types;

public class RRegisterOperations
{
public static StatusCode Run(
string controllerIP,

bool uselLocalProxy = true

/1 [ZH] Wl sEh e plas A

// [EN] Initialize the Agilebot robot

Arm controller = new Arm(
controllerIP,

useLocalProxy

);

// [ZH] EEREDRPLESA
// [EN] Connect to the Agilebot robot
StatusCode code = controller.ConnectSync();
Console.WritelLine(
code != StatusCode.OK
? code.GetDescription()
"EE T /Successfully connected.”

);

Copyright © 2026-present Agilebot Robotics Co., Ltd. 179/ 283

4.6 Register Information | Agilebot Robot SDK

if (code != StatusCode.OK)
{

return code;

try

// [ZH] WEFFH/ZRETIAE
// [EN] Set register index and value
int index = 1;

double value = 9.9;

/] [ZH] BHARFIFH%
// [EN] Write R register

code = controller.Registers.Write_R(

index,
value
)5
if (code == StatusCode.OK)
{
Console.WritelLine(
"5 NRZFIF43 I /Write R Register Success”
)3
}
else
{
Console.WritelLine(
$" 5 ARZFF KM /Write R Register Failed: {code.GetDescription
O
)3
}

// [ZH] CLHXRZFA74%
// [EN] Read R register
double readValue;

(readValue, code) = controller.Registers.Read_ R(

index
)s
if (code == StatusCode.OK)
{

Console.WritelLine(
$" SLHURZF A7 %5 KTl /Read R Register Success: fH/Value = {readValu

Copyright © 2026-present Agilebot Robotics Co., Ltd. 180/ 283

4.6 Register Information | Agilebot Robot SDK

e}"
)5

else

Console.WritelLine(
$" SEHRZF A7 25 KM /Read R Register Failed: {code.GetDescription

O
)5

/1 [ZH] MIERR&F fF4%
// [EN] Delete R register
code = controller.Registers.Delete R(index);
if (code == StatusCode.OK)
{
Console.WriteLine(
"W ERRZF A7 4% T /Delete R Register Success"
)3

else

Console.WritelLine(
$"MIBRRET 743 W /Delete R Register Failed: {code.GetDescription

O
IE

}

catch (Exception ex)
{
Console.WriteLine(
$"PATIERE K /Exception occurred during execution: {ex.Messag
e}"
)s
code = StatusCode.OtherReason;
}
finally
{
/] [ZH] KMER
// [EN] Close the connection
StatusCode disconnectCode =

controller.Disconnect();

Copyright © 2026-present Agilebot Robotics Co., Ltd.

181 /283

4.6 Register Information | Agilebot Robot SDK

if (disconnectCode != StatusCode.OK)

{
Console.WritelLine(
disconnectCode.GetDescription()
)s
if (code == StatusCode.OK)
code = disconnectCode;
}

return code;

4.6.2 MR Motion Register Operations

4.6.2.1 Reading the Value of an MR Register

Method Name Registers.Read_MR(int index)
Description Reads the value of an MR motion register.
Request Parameters index :int MR register number to read

int: MR register numeric value
Return Value .)
StatusCode: Read operation execution result

Collaborative (Copper): v7.6.0.1+

Compatible robot software version)
Industrial (Bronze): v7.6.0.0+

4.6.2.2 Writing the Value of an MR Register

Method Name Registers.Write_MR(int index , int value)
Description Writes the value of an MR motion register.

index :int MR register number to write

Request Parameters)) . .
value :int MR register numeric value to write

Copyright © 2026-present Agilebot Robotics Co., Ltd. 182 /283

4.6 Register Information | Agilebot Robot SDK

Method Name Registers.Write_MR(int index , int value)
Return Value StatusCode: Write operation execution result

Collaborative (Copper): v7.6.0.1+

Compatible robot software version]
Industrial (Bronze): v7.6.0.0+

4.6.2.3 Deleting an MR Register

Method Name Registers.Delete_MR(int index)
Description Deletes the specified MR motion register.
Request Parameters index :int MR register number to delete
Return Value StatusCode: Delete operation execution result

Collaborative (Copper): v7.5.0.0+

Compatible robot software version]
Industrial (Bronze): v7.5.0.0+

Example Code

Registers/MRRegisterOperations.cs

GS]
using Agilebot.IR;

using Agilebot.IR.Types;

public class MRRegisterOperations
{
public static StatusCode Run(
string controllerIP,

bool uselocalProxy = true

/] [ZH] WIEEATERLES A

// [EN] Initialize the Agilebot robot

Arm controller = new Arm(
controllerlIP,

useLocalProxy

g

Copyright © 2026-present Agilebot Robotics Co., Ltd. 183 /283

n()}"

4.6 Register Information | Agilebot Robot SDK

/1 [ZH] EEFEDRLAE A
// [EN] Connect to the Agilebot robot
StatusCode code = controller.ConnectSync();
Console.WriteLine(
code != StatusCode.OK
? code.GetDescription()

: "IERAT)/Successfully connected.”
)

if (code != StatusCode.OK)
{

return code;

try

/] [ZH] WEFFRRIIAE

// [EN] Set register index and value
1;

9;

int index

int value

// [ZH] B AMRZFAF4%
// [EN] Write MR register

code = controller.Registers.Write MR(

index,
value
)s
if (code == StatusCode.OK)
{
Console.WritelLine(
"5 NMR#Z 7 %5 %) /Write MR Register Success"
)s
}
else
{
Console.WritelLine(
$" 5 AMRZ {775 KM /Write MR Register Failed: {code.GetDescriptio
)s
¥

// [ZH] EHMRZ 1725

Copyright © 2026-present Agilebot Robotics Co., Ltd.

184 /283

4.6 Register Information | Agilebot Robot SDK

// [EN] Read MR register
int readValue;
(readValue, code) =

controller.Registers.Read_MR(index);
if (code == StatusCode.OK)
{

Console.WritelLine(

$"BLHUMR A7 2% I /Read MR Register Success: f{fi/Value = {readval
ue}"

)5

else

Console.WritelLine(
$" EHUMRZF /7 23 K /Read MR Register Failed: {code.GetDescription
0"
)5

// [ZH] MHERMRZF 7%
// [EN] Delete MR register
code = controller.Registers.Delete MR(index);
if (code == StatusCode.OK)
{
Console.WriteLine(

"M EEMR AT 7 %% ik P /Delete MR Register Success"
)3

else

Console.WritelLine(
$ " HFEMR 77 A7 %5 K /Delete MR Register Failed: {code.GetDescripti

on()}"
)s

}

catch (Exception ex)

{

Console.WritelLine(
$"PATIEFE R K A /Exception occurred during execution: {ex.Messag
et"
)s

Copyright © 2026-present Agilebot Robotics Co., Ltd. 185/ 283

4.6 Register Information | Agilebot Robot SDK

code = StatusCode.OtherReason;

disconnectCode.GetDescription()

StatusCode.OK)

}
finally
{
/] [ZH] KRMEEZ
// [EN] Close the connection
StatusCode disconnectCode =
controller.Disconnect();
if (disconnectCode != StatusCode.OK)
{
Console.WritelLine(
)s
if (code ==
code = disconnectCode;
}
}

return code;

4.6.3 SR String Register Operations

4.6.3.1 Reading the Value of an SR Register

Method Name
Description

Request Parameters

Return Value

Compatible robot software version

Copyright © 2026-present Agilebot Robotics Co., Ltd.

Registers.Read_SR(int index)
Reads the value of an SR string register.
index :int SR register number to read

string: SR register string value

StatusCode: Read operation execution result

Collaborative (Copper): v7.6.0.1+
Industrial (Bronze): v7.6.0.0+

186 /283

4.6 Register Information | Agilebot Robot SDK

4.6.3.2 Writing the Value of an SR Register

Method Name

Description

Request Parameters

Return Value

Compatible robot software version

Registers.Write_SR(int index , string value)
Writes the value of an SR string register.

index :int SR register number to write

value :string SR register string value to write
StatusCode: Write operation execution result

Collaborative (Copper): v7.6.0.1+
Industrial (Bronze): v7.6.0.0+

4.6.3.3 Deleting an SR Register

Method Name
Description
Request Parameters

Return Value

Compatible robot software version

Example Code

Registers/SRRegisterOperations.cs

using Agilebot.IR;
using Agilebot.IR.Types;

Registers.Delete_SR(int index)

Deletes the specified SR string register.

index :int SR register number to delete
StatusCode: Delete operation execution result

Collaborative (Copper): v7.5.0.0+
Industrial (Bronze): v7.5.0.0+

cs

public class SRRegisterOperations

{

public static StatusCode Run(

string controllerIP,

bool uselocalProxy = true

Copyright © 2026-present Agilebot Robotics Co., Ltd.

187 /283

4.6 Register Information | Agilebot Robot SDK

/1 [ZH] Wl HsEh s plas A

// [EN] Initialize the Agilebot robot

Arm controller = new Arm(
controllerIP,

useLocalProxy

);

// [ZH] EEEDRPLESA
// [EN] Connect to the Agilebot robot
StatusCode code = controller.ConnectSync();
Console.WritelLine(
code != StatusCode.OK
? code.GetDescription()
"EE T /Successfully connected.”

)5

if (code != StatusCode.OK)
{

return code;

try

// [ZH] WEFHFHERIIFE
// [EN] Set register index and value
int index = 1;

string value = "test";

// [ZH] B ASRZF 174
// [EN] Write SR register

code = controller.Registers.Write SR(

index,
value
)s
if (code == StatusCode.OK)
{
Console.WriteLine(
"5 NSRZ 7 e8I /Write SR Register Success"
)s
}
else
{

Copyright © 2026-present Agilebot Robotics Co., Ltd. 188 /283

4.6 Register Information | Agilebot Robot SDK

Console.WritelLine(
$" 5 A\SRAE 775 KW /Write SR Register Failed: {code.GetDescriptio

n()}"
)5

// [ZH] BEHUSREFAF4%

// [EN] Read SR register

string readValue;

(readValue, code) =
controller.Registers.Read_SR(index);

if (code == StatusCode.OK)

{

Console.WritelLine(
$" i HUSRZ /725 I /Read SR Register Success: {EH/Value = {readVal

ue}

)s
else

Console.WritelLine(
$"iLHUSRAF f7 25 KM /Read SR Register Failed: {code.GetDescription

O
IE

// [ZH] MIERSRZFA74%
// [EN] Delete SR register
code = controller.Registers.Delete_SR(index);
if (code == StatusCode.OK)
{
Console.WritelLine(

"M ERSRAT A7 w5 kP /Delete SR Register Success"
)s

else

Console.WritelLine(
$" MR SRZ A7 25 2L M /Delete SR Register Failed: {code.GetDescripti
on()}"
)s

Copyright © 2026-present Agilebot Robotics Co., Ltd. 189 /283

4.6 Register Information | Agilebot Robot SDK

}
catch (Exception ex)
{
Console.WritelLine(
$"PATILFE H R LE S /Exception occurred during execution
e}”
)s
code = StatusCode.OtherReason;
}
finally
{
/] [ZH] RHAZERE
// [EN] Close the connection
StatusCode disconnectCode =
controller.Disconnect();
if (disconnectCode != StatusCode.OK)
{
Console.WriteLine(
disconnectCode.GetDescription()
)3
if (code == StatusCode.OK)
code = disconnectCode;
}
}
return code;
}
}

4.6.4 PR Pose Register Operations

4.6.4.1 Reading the Value of a PR Register

Method Name Registers.Read_PR(int index)
Description Reads the value of a PR pose register.
Request Parameters index :int PR register number to read

Copyright © 2026-present Agilebot Robotics Co., Ltd.

: {ex.Messag

190/ 283

4.6 Register Information | Agilebot Robot SDK

Method Name Registers.Read_PR(int index)

PoseRegister: PR register pose data
Return Value _ .
StatusCode: Read operation execution result

Collaborative (Copper): v7.6.0.1+

Compatible robot software version]
Industrial (Bronze): v7.6.0.0+

4.6.4.2 Writing the Value of a PR Register

Method Name Registers.Write_PR(int index , PoseRegister value)
Description Writes the value of a PR pose register.

index :int PR register number to write
Request Parameters) . .
value :PoseRegister PR register pose data to write

Return Value StatusCode: Write operation execution result

. . Collaborative (Copper): v7.6.0.1+
Compatible robot software version]
Industrial (Bronze): v7.6.0.0+

4.6.4.3 Deleting a PR Register

Method Name Registers.Delete_PR(int index)

Description Deletes the specified PR pose register.
Request Parameters index :int PR register number to delete
Return Value StatusCode: Delete operation execution result

Collaborative (Copper): v7.5.0.0+

Compatible robot software version)
Industrial (Bronze): v7.5.0.0+

Example Code

Registers/PRRegisterOperations.cs

S
using Agilebot.IR;
using Agilebot.IR.Registers;

Copyright © 2026-present Agilebot Robotics Co., Ltd. 191/ 283

4.6 Register Information | Agilebot Robot SDK

using Agilebot.IR.Types;

public class PRRegisterOperations

{
public static StatusCode Run(

string controllerlIP,

bool uselocalProxy = true

/7 [ZH] WIIRHEERRAALES A

// [EN] Initialize the Agilebot robot

Arm controller = new Arm(
controllerIP,

uselLocalProxy

)5

/7 [ZH] EFZFEDRHLEGA
// [EN] Connect to the Agilebot robot
StatusCode code = controller.ConnectSync();
Console.WriteLine(
code != StatusCode.OK
? code.GetDescription()

: "R /Successfully connected. ™
)

if (code != StatusCode.OK)
{

return code;

try

// [ZH] REFFHREGI
// [EN] Set register index

int index = 1;

/] [ZH] AR5 17 as
// [EN] Generate pose register

var pose = new PoseRegister

{
Id = 1,

Name = "Test",

Copyright © 2026-present Agilebot Robotics Co., Ltd. 192 /283

4.6 Register Information | Agilebot Robot SDK

Comment = "Test",

PoseRegisterData = new PoseRegisterData

{
Pt = PoseType.Joint,
Joint = new Joint
{
J1 = 6.6,
J2 = 6.6,
J3 = 6.6,
J4 = 6.6,
J5 = 6.6,
J6 = 6.6,
¥
CartData = null,
¥

};

// [ZH] EAPRF{F4S
// [EN] Write PR register
code = controller.Registers.Write PR(pose);

if (code == StatusCode.OK)

{
Console.WritelLine(
"5 NPRA %5) /Write PR Register Success"
)3
¥
else
{
Console.WritelLine(
$" 5 NPRZ {725 KM /Write PR Register Failed: {code.GetDescriptio
n()}"
)3
}

// [ZH] BEHXPRZFAF 4%

// [EN] Read PR register

PoseRegister readValue;

(readvalue, code) =
controller.Registers.Read_PR(index);

if (code == StatusCode.OK)

{

Console.WritelLine(

Copyright © 2026-present Agilebot Robotics Co., Ltd. 193 /283

4.6 Register Information | Agilebot Robot SDK

$" L HUPRZF {745 L /Read PR Register Success: ID = {readValue.I
d}ll
)s

else

Console.WritelLine(
$" i HUPRZ /725 KM /Read PR Register Failed: {code.GetDescription
O}
)s

/7 [ZH] MIERPRZF 1745
// [EN] Delete PR register
code = controller.Registers.Delete PR(index);
if (code == StatusCode.OK)
{
Console.WriteLine(
"M ERPRAT /7 %5 ik B /Delete PR Register Success"

IE

else

Console.WritelLine(
$"MIBRPRZ /725 M /Delete PR Register Failed: {code.GetDescripti

on()}"
IE

}

catch (Exception ex)
{
Console.WriteLine(
$"PATIERE K /Exception occurred during execution: {ex.Messag
e}"
)s
code = StatusCode.OtherReason;

}
finally

{
// [ZH] KPR
// [EN] Close the connection

StatusCode disconnectCode =

Copyright © 2026-present Agilebot Robotics Co., Ltd.

194 /283

4.6 Register Information | Agilebot Robot SDK

controller.Disconnect();

if (disconnectCode != StatusCode.OK)

{
Console.WritelLine(
disconnectCode.GetDescription()
)s
if (code == StatusCode.OK)
code = disconnectCode;
}

return code;

4.6.5 Modbus Registers (MH Holding Registers, Ml Input
Registers)

4.6.5.1 Reading the Value of an MH Register

Method Name Registers.Read_MH(int index)
Description Gets the value of an MH register.
Request Parameters index :int Register number to get

Register information
Return Value])
StatusCode: Function execution result

Collaborative (Copper): v7.6.0.0+

Compatible robot software version)
Industrial (Bronze): v7.6.0.0+

4.6.5.2 Reading the Value of an MI Register

Method Name Registers.Read_MiI(int index)

Description Gets the value of an Ml register.

Copyright © 2026-present Agilebot Robotics Co., Ltd. 195/283

4.6 Register Information | Agilebot Robot SDK

Method Name Registers.Read_MiI(int index)
Request Parameters index :int Register number to get

Register information
Return Value]]
StatusCode: Function execution result

Collaborative (Copper): v7.6.0.0+

Compatible robot software version]
Industrial (Bronze): v7.6.0.0+

4.6.5.3 Writing the Value of an MH Register

Method Name Registers.Write_MH(int index , int value)
Description Updates the value of an MH register.

index :int Register number
Request Parameters))))
value :int Register information to update

Return Value StatusCode: Function execution result

Collaborative (Copper): v7.6.0.0+

Compatible robot software version]
Industrial (Bronze): v7.6.0.0+

4.6.5.4 Writing the Value of an Ml Register

Method Name Registers.Write_MI(int index , int value)
Description Updates the value of an Ml register.

index :int Register number
Request Parameters) . .)
value :int Register information to update

Return Value StatusCode: Function execution result

Collaborative (Copper): v7.6.0.0+

Compatible robot software version)
Industrial (Bronze): v7.6.0.0+

Example Code

Registers/ModbusRegisterOperations.cs

Copyright © 2026-present Agilebot Robotics Co., Ltd. 196 /283

4.6 Register Information | Agilebot Robot SDK

S
using Agilebot.IR;

using Agilebot.IR.Types;

public class ModbusRegisterOperations
{
public static StatusCode Run(
string controllerIP,

bool uselocalProxy = true

/1 [ZH] W HTE LS A

// [EN] Initialize the Agilebot robot

Arm controller = new Arm(
controllerIP,

useLocalProxy

)5

/1 [ZH] BEEFERLAE A
// [EN] Connect to the Agilebot robot
StatusCode code = controller.ConnectSync();
Console.WriteLine(

code != StatusCode.OK

? code.GetDescription()
"B /Successfully connected.”

);

if (code != StatusCode.OK)
{

return code;

try

// [ZH] WEFFHEREIIAE
// [EN] Set register index and value
int index = 1;

int writevValue = 8;
// [ZH] B AMHIEE: 7%

// [EN] Write MH holding register

code = controller.Registers.Write MH(

Copyright © 2026-present Agilebot Robotics Co., Ltd. 197 /283

4.6 Register Information | Agilebot Robot SDK

index,
writeValue
)s
if (code == StatusCode.OK)
{
Console.WritelLine(
"5 NMHIRFF & A7 28 1T /Write MH Holding Register Success”
)
¥
else
{
Console.WritelLine(
$" 5 AMHIR FF a7 fr a5 KW /Write MH Holding Register Failed: {code.G
etDescription()}"
)
¥

/] [ZH] 5 AMLfNFFF4s

// [EN] Write MI input register

code = controller.Registers.Write MI(
index,

writeValue + 1

)3
if (code == StatusCode.OK)
{
Console.WriteLine(
"5 AMIf N ZF A7 25) /Write MI Input Register Success"
)3
}
else
{
Console.WriteLine(
$" 5 AMIf N\ 5745 K% /Write MI Input Register Failed: {code.Get
Description()}"
)s
}

/7 [ZH] BEHXMHERFFZFAF a5

// [EN] Read MH holding register

int mhValue;

(mhValue, code) = controller.Registers.Read_MH(

index

Copyright © 2026-present Agilebot Robotics Co., Ltd. 198 /283

4.6 Register Information | Agilebot Robot SDK

)s
if (code == StatusCode.OK)
{

Console.WritelLine(
$ " HUMHAE R A7 25 T /Read MH Holding Register Success: fi/Valu
e = {mhvalue}"

)s
}
else
{

Console.WritelLine(

$" SLEUMHIR FF 27 f7 25 K /Read MH Holding Register Failed: {code.Ge
tDescription()}”

)s

}

// [ZH] BEEMI%N 74745
// [EN] Read MI input register
int miValue;

(miValue, code) = controller.Registers.Read MI(

index
)
if (code == StatusCode.OK)
{
Console.WritelLine(
$"EEEUMIF N PR A7 2 i3 /Read MI Input Register Success: fH/Value
= {mivalue}"
)
}
else
{

Console.WritelLine(
$" EEEUMIS N 2R A7 28 K /Read MI Input Register Failed: {code.GetD

escription()}"

)s
}
}
catch (Exception ex)
{
Console.WritelLine(

$"PATILFE R A FH /Exception occurred during execution: {ex.Messag
e}l'

Copyright © 2026-present Agilebot Robotics Co., Ltd.

199 /283

4.6 Register Information | Agilebot Robot SDK

)
code = StatusCode.OtherReason;

}
finally

{
/] [ZH] KRMEE
// [EN] Close the connection
StatusCode disconnectCode =
controller.Disconnect();
if (disconnectCode != StatusCode.OK)
{
Console.WritelLine(
disconnectCode.GetDescription()
)s
if (code == StatusCode.OK)

code = disconnectCode;

return code;

Copyright © 2026-present Agilebot Robotics Co., Ltd.

200/ 283

4.7 Trajectory Control | Agilebot Robot SDK

4.7 Trajectory Control

4.7.1 Setting the Offline Trajectory File

Method Name Trajectory.SetOffLineTrajectoryFile(string path)
Description Sets the offline trajectory file to be executed.

path : string Offline trajectory file path, such as example file A.trajectory
A.trajectory trajectory file format is a text file, described as follows:
- Line 1: 6 represents 6 axes, 0.001 represents 1ms interval between two points,
8093 represents a total of 8093 trajectory points
- Line 2: Represents the initial positions of the 6 axes
- Lines 3-8095: Represent trajectory points, including positions, velocities,

accelerations, torque feedforward, do ports, and values of do ports for the 6 axes

Request
S - do_port represents the used do port (range 1-24)
- do_port is -1, indicating no 10 signal will be triggered at this position
- do_port is 1, do_state is 1, indicating do1 port will trigger ON signal at this
position
- do_port is 1, do_state is 0, indicating do1 port will trigger OFF signal at this
position
Users upload the offline file to the robot controller root directory using
FileManager.upload, then execute the trajectory using instructions 4.7.2 and 4.7.3
Return Value StatusCode: Set operation execution result
Compatible robot Collaborative (Copper): v7.5.0.0+
software version Industrial (Bronze): v7.5.0.0+

4.7.2 Moving the Robot to the Start Point of the Offline Trajectory

Method Name Trajectory.PrepareOfflineTrajectory()

o Moves the robot to the start point of the offline trajectory at a safe
Description
speed.

Copyright © 2026-present Agilebot Robotics Co., Ltd. 201/ 283

4.7 Trajectory Control | Agilebot Robot SDK

Method Name Trajectory.PrepareOfflineTrajectory()
Request Parameters None

Return Value StatusCode: Prepare operation execution result
Compatible robot software Collaborative (Copper): v7.5.0.0+

version Industrial (Bronze): v7.5.0.0+

4.7.3 Starting Execution of the Offline Trajectory File

Method Name Trajectory.ExecuteOfflineTrajectory()
Description Starts the execution of the offline trajectory file.
Request Parameters None

Return Value StatusCode: Execute operation execution result

Collaborative (Copper): v7.5.0.0+

Compatible robot software version)
Industrial (Bronze): v7.5.0.0+

4.7.4 Convert CSV Trajectory File to Trajectory Format

Method Trajectory.TransformCsvToTrajectory(string fileName)

o Converts a trajectory CSV file into the trajectory format and saves it to the
Description) o
controller's trajectory file directory.

Request Parameter fileName : string — name of the CSV trajectory file.

string: path of the converted trajectory file.
Return Value _ .
StatusCode: result of the conversion operation.

Compatible Robot Collaborative (Copper): v7.5.0.0+

Software Versions Industrial (Bronze): v7.5.0.0+

Copyright © 2026-present Agilebot Robotics Co., Ltd. 202 /283

4.7 Trajectory Control | Agilebot Robot SDK

4.7.5 Query Trajectory Conversion Status

Method Trajectory.CheckTransformStatus(string fileName)
Description Queries the working status of the TransformCsvToTrajectory process.

fileName : string — result returned by the TransformCsvToTrajectory
Request Parameter)
interface.

TransformState: conversion state.

Return Value .
StatusCode: result of the query operation.

Compatible Robot Software Collaborative (Copper): v7.5.0.0+

Versions Industrial (Bronze): v7.5.0.0+

Example Code

Trajectory/OfflineTrajectory.cs

cs
using System.IO;

using Agilebot.IR;
using Agilebot.IR.Trajectory;
using Agilebot.IR.Types;

public class OfflineTrajectory

{
public static StatusCode Run(

string controllerIP,

bool uselocalProxy = true

/7 [ZH] WIERHEER RIS A

// [EN] Initialize the Agilebot robot

Arm controller = new Arm(
controllerIP,

uselLocalProxy

g

[/ [ZH] ZEBAEZHFALEA
// [EN] Connect to the Agilebot robot

Copyright © 2026-present Agilebot Robotics Co., Ltd. 203 /283

4.7 Trajectory Control | Agilebot Robot SDK

StatusCode code = controller.ConnectSync();
Console.WriteLine(
code != StatusCode.OK
? code.GetDescription()
: "IERERT)/Successfully connected.”

);

if (code != StatusCode.OK)
{

return code;

try

/7 [ZH] SREHLE AR
// [EN] Get robot mode
(UserOpMode opMode, StatusCode opCode) =
controller.GetOpMode();
if (opCode == StatusCode.OK)
{
Console.WritelLine(
$" 4 ETALEE A 20/Current robot mode: {opMode}"
)3
if (opMode != UserOpMode.AUTO)
{
Console.WriteLine(
$" LN PAT BAHENL AN B3R /0ffline trajectory execut
ion must be in automatic mode”
)

return StatusCode.OtherReason;

}
}
else
{

Console.WriteLine(

$"SREH LA N /Failed to get robot mode: {opCode.GetDescri
ption()}"

)s

}

// [ZH] WA SCHEEINLEE A
// [EN] Add program file to robot

Copyright © 2026-present Agilebot Robotics Co., Ltd. 204 / 283

ion()}"

e}"”

4.7 Trajectory Control | Agilebot Robot SDK

string file user_program = GetTestFilePath(
"test.csv"
)s
StatusCode ret_code =
controller.FileManager.Upload(
file_user_program,

FileType.TmpFile,

true
)s
if (ret_code != StatusCode.OK)
{
Console.WritelLine(
$" ALk /Upload file failed: {ret_code.GetDescription()}"
)s
return ret_code;
}

Console.WriteLine(
" FAE RS /File upload success”
)

// [ZH] HRCSVEH Rt A T Re
// [EN] Test CSV to trajectory file conversion functionality

string csvFilename = "test.csv";

(

string trajFileName,

StatusCode transformCode

controller.Trajectory.TransformCsvToTrajectory(

csvFilename

DE

if (transformCode != StatusCode.OK)

{
Console.WritelLine(
$"CSVE: R /CSV conversion failed: {transformCode.GetDescript
)
return transformCode;
}
Console.WritelLine(

$"CSVEE# /T /CSV conversion success, trajectory file: {trajFileNam

Copyright © 2026-present Agilebot Robotics Co., Ltd.

205/ 283

4.7 Trajectory Control | Agilebot Robot SDK

);

// [ZH] KrEFEHRE
// [EN] Check conversion status
var startTime = System.DateTime.Now;
TransformState state;
StatusCode statusCode;
do
{
(state, statusCode) =
controller.Trajectory.CheckTransformStatus(
System.IO0.Path.GetFileName(

trajFileName

)
if (statusCode != StatusCode.OK)
{

Console.WriteLine(
"R A AL PR & R M/ Check transform status failed: {statusCod
e.GetDescription()}"
)

return statusCode;

Console.WritelLine(

$"HEHOIR A /Transform state: {state}"
)3
Thread.Sleep(2000); // “5fF2fb

if (
System.DateTime.Now - startTime

> System.TimeSpan.FromSeconds(60)

)

{
Console.WritelLine(

"EEHOIR S K AT EEN /Transform status check timeout"

)5
break;

}

} while (

state != TransformState.TRANSFORM_SUCCESS
&& state != TransformState.TRANSFORM_FAILED

Copyright © 2026-present Agilebot Robotics Co., Ltd. 206/ 283

4.7 Trajectory Control | Agilebot Robot SDK

);

if (state == TransformState.TRANSFORM_ FAILED)

{
Console.WritelLine(
"CSVEE MO /CSV conversion failed"
)s
return StatusCode.OtherReason;
}

/] [ZH] HAATS5 I BT T 8RB WG IR A A SRAF F AT S5 HPIRAS
// [EN] After the conversion task is successful and the result is queri
ed, the server will not continue to save the conversion task status
(
TransformState finalState,
StatusCode finalCode
) = controller.Trajectory.CheckTransformStatus(
System.IO.Path.GetFileName(trajFileName)
)
if (finalCode != StatusCode.OK)
{
Console.WritelLine(
$" R ZRSHKE R M /Final status check failed: {finalCode.GetDesc
ription()}"
)s
return finalCode;

}

Console.WritelLine(
$" AL EHORA /Final transform state: {finalState}"

hE

// [ZH] B
// [EN] Set trajectory file
code =
controller.Trajectory.SetOffLineTrajectoryFile(
"test_torque.trajectory"
)s
if (code != StatusCode.OK)
{
Console.WritelLine(
$" B BB R /Set trajectory file failed: {code.GetDescript

ion()}"

Copyright © 2026-present Agilebot Robotics Co., Ltd. 207 / 283

4.7 Trajectory Control | Agilebot Robot SDK

)

return code;
}
Console.WritelLine(

"V BT /Set trajectory file success"
)

/] [ZH] #EEEEHIL

// [EN] Prepare offline trajectory

code =
controller.Trajectory.PrepareOfflineTrajectory();

if (code != StatusCode.OK)

{

Console.WriteLine(
$"HERS BRI K /Prepare offline trajectory failed: {code.GetD

escription()}"

)s

return code;
¥
Console.WritelLine(

"UES B LB LT /Prepare offline trajectory success"
)3

/7 [ZH] SEAPHLES AR R &5 2 P

// [EN] Wait for robot and servo to be idle
startTime = System.DateTime.Now;

RobotState robotStatus;

ServoState servoStatus;

StatusCode robotStatusCode;

StatusCode servoStatusCode;

do
{
(robotStatus, robotStatusCode) =
controller.GetRobotState();
if (robotStatusCode != StatusCode.OK)
{
Console.WritelLine(
$ SR 28 \IRZS LM /Get robot state failed: {robotStatusCod
e.GetDescription()}"

)s

return robotStatusCode;

Copyright © 2026-present Agilebot Robotics Co., Ltd. 208/ 283

4.7 Trajectory Control | Agilebot Robot SDK

(servoStatus, servoStatusCode) =
controller.GetServoState();
if (servoStatusCode != StatusCode.OK)

{
Console.WritelLine(
$"IRHUERCIRAS L /Get servo state failed: {servoStatusCode.
GetDescription()}”
)s
return servoStatusCode;
}

Console.WritelLine(
$"Hlas AR /Robot state: {robotStatus}, falfiik#&/Servo state:

{servoStatus}"
)s
if (
robotStatus == RobotState.ROBOT_IDLE
&& servoStatus == ServoState.SERVO_IDLE
)
{
Console.WriteLine(
"HLES N FI{A] R #% £. 25 H /Robot and servo are idle"
)
break;
}
Thread.Sleep(2000); // “5fF2f)
if (
System.DateTime.Now - startTime
> System.TimeSpan.FromSeconds(60)
)
{
Console.WritelLine(
"SEREALAS NFME] AR 28 7S NN /Waiting for robot and servo idle
timeout™
)s
break;
}

Copyright © 2026-present Agilebot Robotics Co., Ltd. 209/ 283

4.7 Trajectory Control | Agilebot Robot SDK

} while (true);

/] [ZH] AT B LBk

// [EN] Execute offline trajectory

code =
controller.Trajectory.ExecuteOfflineTrajectory();

if (code == StatusCode.OK)

{
Console.WritelLine(
"HAT B LI LT /Execute offline trajectory success"
)s
Console.WritelLine(
"Hlge AP AE AT S FE R /Robot started executing trajectory progra
"
)s
¥
else
{

Console.WritelLine(

e

$"PATELHIL R /Execute offline trajectory failed: {code.GetD

escription()}"

)3
}
}
catch (Exception ex)
{
Console.WriteLine(

$" PATIE R K 4 % /Exception occurred during execution/Exception o
ccurred during execution: {ex.Message}"
)3
code = StatusCode.OtherReason;
}
finally
{
/] [ZH] KMER
// [EN] Close the connection
StatusCode disconnectCode =
controller.Disconnect();
if (disconnectCode != StatusCode.OK)
{
Console.WriteLine(

disconnectCode.GetDescription()

Copyright © 2026-present Agilebot Robotics Co., Ltd. 210/ 283

4.7 Trajectory Control | Agilebot Robot SDK

)s
if (code == StatusCode.OK)

code = disconnectCode;

return code;

/// <summary>
/// B test_files Ak OB 4261 U5 i
/1] FRRWHESRECSHIRE Y H % T test_files U i) S 4%
/// </summary>
private static string GetTestFilePath(string fileName)
{
/7 RBUCHHITE PR H
string? codeFilePath =

new System.Diagnostics.StackTrace(true)

.GetFrame(0)
?.GetFileName();
if (string.IsNullOrkEmpty(codeFilePath))
{
throw new InvalidOperationException(
"TCVESREY R SCE 42 /Cannot get current file path"
)3
}

string? codeDirectory = Path.GetDirectoryName(

codeFilePath

)5

if (string.IsNullOrEmpty(codeDirectory))

{
throw new InvalidOperationException(

"TCIEIRE G HT H 3t 845 /Cannot get current directory path"

);

}

// Hiftest files iz
string testFilesDirectory = Path.Combine(
codeDirectory,

"test files"
)

Copyright © 2026-present Agilebot Robotics Co., Ltd. 211/ 283

4.7 Trajectory Control | Agilebot Robot SDK

/] R E R AR

string filePath = Path.Combine(
testFilesDirectory,
fileName

)s
return filePath;

Copyright © 2026-present Agilebot Robotics Co., Ltd. 212 /283

4.8 Alarm Information | Agilebot Robot SDK

4.8 Alarm Information

4.8.1 Getting the Most Severe Alarm

Method Name Alarm.GetTopAlarm()
Description Gets the most severe alarm information.
Request Parameters None

string: Alarm information string
Return Value _)
StatusCode: Get operation execution result

Collaborative (Copper): v7.5.0.0+

Compatible robot software version]
Industrial (Bronze): v7.5.0.0+

Example Code

Alarm/GetTopAlarm.cs

cs
using Agilebot.IR;

using Agilebot.IR.Types;

public class GetTopAlarm
{
public static StatusCode Run(
string controllerIP,

bool uselocalProxy = true

/1 [ZH] WIEEHAER RIS A

// [EN] Initialize the Agilebot robot

Arm controller = new Arm(
controllerlIP,

useLocalProxy

g

Copyright © 2026-present Agilebot Robotics Co., Ltd. 213 /283

4.8 Alarm Information | Agilebot Robot SDK

/1 [ZH] EEFEDRLAE A
// [EN] Connect to the Agilebot robot
StatusCode code = controller.ConnectSync();
Console.WriteLine(
code != StatusCode.OK
? code.GetDescription()

: "IERAT)/Successfully connected.”
)

if (code != StatusCode.OK)
{

return code;

try

/] [ZH] FREUE™) — %R

// [EN] Get the most severe alarm

string topError;

(topError, code) =
controller.Alarm.GetTopAlarm();

if (code == StatusCode.OK)

{
Console.WritelLine(
"SREUER™ E AR 1) /Get Top Alarm Success"
)5
if (string.IsNullOrEmpty(topError))
{
Console.WriteLine(
"MEI LI E /No current alarms”
);
}
else
{
Console.WritelLine(
$" I IR % /Most Severe Alarm: {topError}"
);
}
}
else
{

Console.WritelLine(

Copyright © 2026-present Agilebot Robotics Co., Ltd. 214 / 283

4.8 Alarm Information | Agilebot Robot SDK

$"IRE B IR W /Get Top Alarm Failed: {code.GetDescription

0"
)s
}
}
catch (Exception ex)
{
Console.WritelLine(
$" PATIEFE R K E 5% /Exception occurred during execution: {ex.Messag
e}”
)s
code = StatusCode.OtherReason;
}
finally
{
/] [ZH] KMEE
// [EN] Close the connection
StatusCode disconnectCode =
controller.Disconnect();
if (disconnectCode != StatusCode.OK)
{
Console.WritelLine(
disconnectCode.GetDescription()
)3
if (code == StatusCode.OK)
code = disconnectCode;
}
}
return code;
}
}

4.8.2 Getting All Active Alarms

Method Name Alarm.GetAllActiveAlarms()

Description Gets all currently active alarm information.

Copyright © 2026-present Agilebot Robotics Co., Ltd. 215/ 283

4.8 Alarm Information | Agilebot Robot SDK

Method Name Alarm.GetAllActiveAlarms()
Request Parameters None

List<string>: Alarm information list
Return Value ']
StatusCode: Get operation execution result

Collaborative (Copper): v7.5.0.0+

Compatible robot software version]
Industrial (Bronze): v7.5.0.0+

Example Code

Alarm/GetAllActiveAlarms.cs

cs
using Agilebot.IR;

using Agilebot.IR.Types;

public class GetAllActiveAlarms
{
public static StatusCode Run(
string controllerlIP,

bool uselLocalProxy = true

/1 [ZH] WIassEh s plas A

// [EN] Initialize the Agilebot robot

Arm controller = new Arm(
controllerIP,

useLocalProxy

)s

/1 [ZH] BEESEFLE A
// [EN] Connect to the Agilebot robot
StatusCode code = controller.ConnectSync();
Console.WritelLine(

code != StatusCode.OK

? code.GetDescription()
: "R /Successfully connected. ™

g

if (code != StatusCode.OK)

Copyright © 2026-present Agilebot Robotics Co., Ltd. 216/ 283

4.8 Alarm Information | Agilebot Robot SDK

return code;

try

/7 [ZH] SREUITA BiE s I &

// [EN] Get all active alarms

List<string> errors;

(errors, code) =
controller.Alarm.GetAllActiveAlarms();

if (code == StatusCode.OK)

{
Console.WriteLine(
"SREUT A WG A T /Get A1l Active Alarm Success"
)s
Console.WriteLine(
$ GBS & /Active Alarm Count: {errors.Count}"
)3
if (errors.Count == 0)
{
Console.WriteLine(
"MET LGSR /No active alarms”
)
}
else
{
Console.WriteLine(
"VEANHRE SR /Active Alarm List:"
)
for (int i = @; i < errors.Count; i++)
{
Console.WritelLine(
$" {i + 1}. {errors[i]}"
)
}
}
}
else
{

Console.WritelLine(

Copyright © 2026-present Agilebot Robotics Co., Ltd. 217 /283

4.8 Alarm Information | Agilebot Robot SDK

$"SRELAT A TG B M /Get All Active Alarm Failed: {code.GetDes

cription()}"
)s
}
}
catch (Exception ex)
{
Console.WritelLine(
$" PATIEFE R K E 5% /Exception occurred during execution: {ex.Messag
e}”
)s
code = StatusCode.OtherReason;
}
finally
{
/] [ZH] KMEE
// [EN] Close the connection
StatusCode disconnectCode =
controller.Disconnect();
if (disconnectCode != StatusCode.OK)
{
Console.WriteLine(
disconnectCode.GetDescription()
)3
if (code == StatusCode.OK)
code = disconnectCode;
}
}

return code;

4.8.3 Resetting Alarms

Method Name Alarm.ResetAlarms()

Description Resets errors.

Copyright © 2026-present Agilebot Robotics Co., Ltd. 218 /283

4.8 Alarm Information | Agilebot Robot SDK

Method Name Alarm.ResetAlarms()
Request Parameters None
Return Value StatusCode: Function execution result

Collaborative (Copper): v7.5.0.0+

Compatible robot software version]
Industrial (Bronze): v7.5.0.0+

Copyright © 2026-present Agilebot Robotics Co., Ltd. 219/ 283

4.9 File Service Class | Agilebot Robot SDK

4.9 File Service Class

4.9.1 Uploading a Local File to the Robot

Method Name

Description

Request Parameters

Note

Return Value

Compatible robot

software version

FileManager.Upload(string filePath , FileType ft , bool overWriting = false)
Uploads a local file to the robot controller.

filePath : string Absolute path of the local file to be uploaded
ft : FileType Type of the file to be uploaded
overWriting : bool Whether to overwrite existing file in robot controller, default

is false (no overwrite)

For USER_PROGRAM and BLOCK_PROGRAM, provide the full path to the xml /
.block file; the system also uploads the same-name json (and .xml for

BlockProgram).
StatusCode: Upload operation execution result

Collaborative (Copper): v7.5.0.0+
Industrial (Bronze): v7.5.0.0+

4.9.2 Downloading a Robot File to a Local Machine

Method Name

Description

Request

Parameters

Note

FileManager.Download(string fileName , FileType ft , string savePath)
Downloads a file from the robot controller to local.

fileName : string Name of the file to be downloaded
ft : FileType Type of the file to be downloaded

savePath : string Local save path for the downloaded file

For UserProgram / BlockProgram / TrajectoryProgram , specify only the
program name (filename without extension). For TmpFile , provide the full

filename with extension.

Copyright © 2026-present Agilebot Robotics Co., Ltd.

220/ 283

4.9 File Service Class | Agilebot Robot SDK

Method Name FileManager.Download(string fileName , FileType ft , string savePath)
Return Value StatusCode: Download operation execution result

Compatible robot Collaborative (Copper): v7.5.0.0+

software version Industrial (Bronze): v7.5.0.0+

4.9.3 Deleting a File from the Robot

Method Name FileManager.Delete(string fileName , FileType ft)
Description Deletes a file from the robot controller.

fileName : string Name of the file to be deleted
Request Parameters .]
ft : FileType Type of the file to be deleted

For UserProgram / BlockProgram / TrajectoryProgram , specify only the
Note program name (filename without extension). For TmpFile , provide the full

filename with extension.

Return Value StatusCode: Delete operation execution result
Compatible robot Collaborative (Copper): v7.5.0.0+
software version Industrial (Bronze): v7.5.0.0+

Example Code

FileManager/UserProgramOperations.cs

S
using System.Collections.Generic;

using System.IO;

using Agilebot.IR;

using Agilebot.IR.FileManager;
using Agilebot.IR.Types;

public class UserProgramOperations

{

/// <summary>

/1] TR P RER SO e B R AR: AR, T RAMER

Copyright © 2026-present Agilebot Robotics Co., Ltd. 221 /283

4.9 File Service Class | Agilebot Robot SDK

/// </summary>
public static StatusCode Run(
string controllerlIP,

bool uselocalProxy = true

/1 [ZH] WIasesEh s plas A

// [EN] Initialize the Agilebot robot

Arm controller = new Arm(
controllerIP,

useLocalProxy

)s

/7 [ZH] EFZFEDRHLEGA
// [EN] Connect to the Agilebot robot
StatusCode code = controller.ConnectSync();
Console.WritelLine(
code != StatusCode.OK
? code.GetDescription()
: "HERERLY)/Successfully connected. "

g

if (code != StatusCode.OK)
{

return code;

try

Console.WriteLine(
"FEUGF PR SRR /Starting User Program File Operations Test"
)

// [ZH] FRECRA SR B4

// [EN] Get test file path

string file_user_program = GetTestFilePath(
"test_prog.xml"

)s

string fileName = "test_prog";

string save_path = GetTestFilePath("download");

// [ZH] AR P REFR SOt

Copyright © 2026-present Agilebot Robotics Co., Ltd. 222 /283

4.9 File Service Class | Agilebot Robot SDK

// [EN] Upload user program file
code = controller.FileManager.Upload(
file_user_program,
FileType.UserProgram,
true
)s
if (code == StatusCode.OK)
{
Console.WritelLine(
$" FH PR S/ EAE Tl /User Program File Upload Success: {fileNa
me}"

)5
else

Console.WritelLine(
$" F PR SO EAE SR /User Program File Upload Failed: {code.Ge
tDescription()}"
)s

return code;

/1 [ZH] % TR
// [EN] Wait before download
Thread.Sleep(1000);

// [ZH] TFEAP IR
// [EN] Download user program file
code = controller.FileManager.Download(
fileName,
FileType.UserProgram,
save_path
)3
if (code == StatusCode.OK)
{
Console.WritelLine(
$" F PR SCIE R 3T /User Program File Download Success: {file

Name}"

)5

else

Copyright © 2026-present Agilebot Robotics Co., Ltd. 223 /283

4.9 File Service Class | Agilebot Robot SDK

Console.WritelLine(
$"H P RER U F 3K /User Program File Download Failed: {code.
GetDescription()}"
)

return code;

// [ZH] R R
// [EN] Search user program file
List<string> results = new List<string>();

(results, code) = controller.FileManager.Search(

fileName
)s
if (code == StatusCode.OK)
{
Console.WriteLine(
$" F PR O3 2 T /User Program File Search Success"
)s
Console.WritelLine(
$" MR K5 /Search Results Count: {results.Count}"
)3
foreach (var result in results)
{
Console.WriteLine(
$" HKFBICH/Found File: {result}"
)
}
}
else
{
Console.WritelLine(
$" F PR SO R K /User Program File Search Failed: {code.Ge
tDescription()}"
)s
return code;
}

/7 [ZH] SEfmlER
// [EN] Wait before delete
Thread.Sleep(1000);

// [ZH] MIERH P REFR SO

Copyright © 2026-present Agilebot Robotics Co., Ltd. 224 [283

4.9 File Service Class | Agilebot Robot SDK

// [EN] Delete user program file
code = controller.FileManager.Delete(
fileName,

FileType.UserProgram

)s
if (code == StatusCode.OK)
{
Console.WritelLine(
$" FH PR SO B Tl /User Program File Delete Success: {fileNa
me}"
)s
}
else
{
Console.WritelLine(
$" F PR R U MR 2 /User Program File Delete Failed: {code.Ge
tDescription()}”
)s
return code;
}
Console.WritelLine(
"R SRR 58 ik /User Program File Operations Test Complete
dll
)3
}
catch (Exception ex)
{
Console.WriteLine(
$"PATIERE R E R /Exception occurred during execution: {ex.Messag
e}ll
)3
code = StatusCode.OtherReason;
}
finally
{

/] [ZH] RHEE

// [EN] Close the connection

StatusCode disconnectCode =
controller.Disconnect();

if (disconnectCode != StatusCode.OK)
{

Copyright © 2026-present Agilebot Robotics Co., Ltd. 225 /283

4.9 File Service Class | Agilebot Robot SDK

Console.WritelLine(
disconnectCode.GetDescription()

)

if (code == StatusCode.OK)

code = disconnectCode;

return code;

/// <summary>
/// B test_files Ak OB 4261 U5 i
/1] JErR WA SRECA FTRE 7 H 3 T ftest_files KR Jerh i ik Az
/// </summary>
private static string GetTestFilePath(string fileName)
{
/7 [ZH] SRECHRTRE S H %
// [EN] Get current assembly directory
string? codeFilePath =

new System.Diagnostics.StackTrace(true)

.GetFrame(0)
?.GetFileName();
if (string.IsNullOrEmpty(codeFilePath))
{
throw new InvalidOperationException(
"TCVESREY R SCE 42 /Cannot get current file path"
)3
}

string? codeDirectory = Path.GetDirectoryName(

codeFilePath

)5

if (string.IsNullOrEmpty(codeDirectory))

{
throw new InvalidOperationException(

"TCIEIRE G HT H 6845 /Cannot get current directory path"

);

}

// [ZH] HEttest files i kikiz
// [EN] Build test_files folder path

Copyright © 2026-present Agilebot Robotics Co., Ltd. 226 /283

4.9 File Service Class | Agilebot Robot SDK

string testFilesDirectory = Path.Combine(
codeDirectory,
"test files"

)

/1 [ZH] R e B ik Az

// [EN] Build complete file path

string filePath = Path.Combine(
testFilesDirectory,
fileName

)

return filePath;

4.9.4 Search Files by Filename Pattern

Method Name FileManager.Search(string pattern , ref List<string> fl)

o Searches for files on the robot controller that match the filename
Description
pattern.

pattern : string Filename match pattern

Request Parameters)) o
fl : ref List<string> Returned file list

Return Value StatusCode: Search operation execution result
Compatible robot software Collaborative (Copper): v7.5.0.0+
version Industrial (Bronze): v7.5.0.0+

Copyright © 2026-present Agilebot Robotics Co., Ltd.

2271283

4.10 BasScript Script Program Class | Agilebot Robot SDK

4.10 BasScript Script Program Class

Method Name

Description

Request Parameters

Compatible robot

software version

Note

BasScript(name)

BasScript script program class constructor, corresponds to program

instructions in teaching pendant program writing.
name :string Script program name

Collaborative (Copper): v7.5.2.0+

Industrial (Bronze): Not supported

All methods in the BasScript script program class have the same compatible

robot software version requirements as this class.

4.10.1 Motion to Point Instruction

Method Name

Description

Request

Parameters

Return Value

BasScript.BasMotion.MovelJoint(poseType, poselndex, speedType, speedValue,

smoothType, smoothDistance, extraParam)

Executes joint motion instruction, corresponds to MoveJoint instruction in teaching

pendant program writing.

poseType : Pose type

poselndex : Pose index

speedType : Speed type
speedValue : Speed value
smoothType : Smooth type
smoothDistance : Smooth distance

extraParam : Extra parameter

StatusCode: Motion instruction execution result

4.10.2 Linear Motion to Point Instruction

Copyright © 2026-present Agilebot Robotics Co., Ltd.

228 /283

Method Name

Description

Request

Parameters

Return Value

4.10 BasScript Script Program Class | Agilebot Robot SDK

BasScript.BasMotion.MoveLine(poseType, poselndex, speedType, speedValue,

smoothType, smoothDistance, extraParam)

Executes linear motion instruction, corresponds to Moveline instruction in teaching

pendant program writing.

poseType : Pose type

poselndex : Pose index

speedType : Speed type
speedValue : Speed value
smoothType : Smooth type
smoothDistance : Smooth distance

extraParam : Extra parameter

StatusCode: Motion instruction execution result

4.10.3 Arc Motion to Point Instruction

Method

Name

Description

Request

Parameters

Return Value

BasScript.BasMotion.MoveCircle(poseTypel, poselndexl, poseType2, poselndex2,

speedType, speedValue, smoothType, smoothDistance, extraParam)

Executes arc motion instruction, corresponds to MoveCircle instruction in teaching

pendant program writing.

poseTypel : Intermediate point pose type
poselndex1 : Intermediate point pose index
poseType2 : End point pose type
poselndex2 : End point pose index
speedType : Speed type

speedValue : Speed value

smoothType : Smooth type

smoothDistance : Smooth distance

extraParam : Extra parameter

StatusCode: Motion instruction execution result

4.10.4 Jump Point-to-Point Motion Instruction

Copyright © 2026-present Agilebot Robotics Co., Ltd.

2291283

4.10 BasScript Script Program Class | Agilebot Robot SDK

BasScript.BasMotion.Jump(poseType, poselndex, speedValue, speedRatio,
Method Name)))
limZType, limZValue, smoothType, smoothDistance, extraParam)

Description JUMP instruction, robot point-to-point motion to specified position

poseType : Target pose storage type
poselndex : Target position index
speedValue : Motion speed value

speedRatio : Motion speed ratio

Request o
limZType :Z-axis limit type
Parameters Lo
limzValue :Z-axis limit value
smoothType : Smooth type
smoothDistance : Smooth distance
extraParam : Extra parameter
Return Value StatusCode: Motion instruction execution result

4.10.5 Jump3 Three-Point Jump Instruction

BasScript.BasMotion.Jump3(poseType, poselndex, speedValue, speedRatio,
Method Name)
smoothType, smoothDistance, extraParam)

Description JUMP3 instruction, robot point-to-point motion to specified position

poseType : Target pose storage type
poselndex : 3 target position indices

speedValue : Motion speed value

Request . .
speedRatio : Motion speed ratio
Parameters
smoothType : Smooth type
smoothDistance : Smooth distance
extraParam : Extra parameter
Return Value StatusCode: Motion instruction execution result

4.10.6 Jump3CP Three-Point Jump CP Instruction

Copyright © 2026-present Agilebot Robotics Co., Ltd. 230/ 283

4.10 BasScript Script Program Class | Agilebot Robot SDK

BasScript.BasMotion.Jump3CP(poseType, poselndex, speedValue, smoothType,
Method Name)
smoothDistance, extraParam)

Description JUMP3CP instruction, robot point-to-point motion to specified position
poseType : Target pose storage type
poselndex : 3 target position indices

Request speedValue : Motion speed value

Parameters smoothType : Smooth type

smoothDistance : Smooth distance

extraParam : Extra parameter

Return Value StatusCode: Motion instruction execution result

4.10.7 Extra Parameter Class

Method Name ExtraParam.Acceleration(value)

Description Sets additional acceleration parameter

Request Parameters

Return Value

Method Name

Description

Request Parameters

Return Value

Method Name

Description

Request Parameters

Return Value

value :double Acceleration value, range 1~120

StatusCode: Parameter setting execution result

ExtraParam.RTCP()
Sets RTCP (Real-Time Control Protocol) parameter
None

StatusCode: Parameter setting execution result

ExtraParam.Offset(index)
Sets coordinate offset parameter
index :int PR index for offset

StatusCode: Parameter setting execution result

Copyright © 2026-present Agilebot Robotics Co., Ltd.

231/ 283

Method Name

Description

Request

Parameters

Return Value

Method Name

Description

Request Parameters

Return Value

Method Name

Description

Request Parameters

Return Value

4.10 BasScript Script Program Class | Agilebot Robot SDK

ExtraParam.TB(second, type, name)

Sets delay parameter to execute program instruction after current instruction

runs

second : double Delay in seconds
type :string Instruction type

name :string Program name

StatusCode: Parameter setting execution result

ExtraParam.TB(second, type, index, status)
Sets delay parameter to assign value to specified 10 after current instruction runs

second : double Delay in seconds
: string 10 type
:int 10 index

type
index

status : int Status to assign

StatusCode: Parameter setting execution result

ExtraParam.SKIP(index)
Sets jump instruction parameter
index :intJump to the specified LABEL index

StatusCode: Parameter setting execution result

4.10.8 AssignValue Assignment Instruction

Method Name

Description

Request Parameters

BasScript.AssignValue(param1, index, param2, value, optindex, optValue)
Assignment instruction

param1: Type of parameter 1
index: Index of parameter 1
param2: Type of parameter 2

value: Value of parameter 2

Copyright © 2026-present Agilebot Robotics Co., Ltd.

2321283

4.10 BasScript Script Program Class | Agilebot Robot SDK

Method Name BasScript.AssignValue(param1, index, param2, value, optindex, optValue)

optindex: Additional index for parameter 1

optValue: Additional value for parameter 2

Return Value StatusCode: Result of function execution

4.10.9 AssignValue Assignment Instruction

Method Name BasScript.AssignValue(param, index, value)
Description Assign a value to a variable

param: Parameter type (AssignType)
Request Parameters index: Index (integer)

value: Value (IOStatus, double, or string)

Return Value StatusCode: Result of function execution

4.10.10 IF Conditional Instruction

Method Name BasScript.BasLogical.IF(param1, index, param2, value, operatorType)
Description Adds a logical IF statement to the script

param1: First parameter, type RegisterType or IOType
index: Index (integer)

Request Parameters param2: Second parameter, type RegisterType, IOType, or OtherType
value: Value, type index, number, string, or I0Status

operatorType: Boolean operator, default is equal

Return Value StatusCode: Result of function execution

4.10.11 ELSE_IF Conditional Branch Instruction

Copyright © 2026-present Agilebot Robotics Co., Ltd. 233 /283

4.10 BasScript Script Program Class | Agilebot Robot SDK

Method Name BasScript.BasLogical .ELSE_IF(param1, index, param2, value, operatorType)
Description Adds a logical ELSE IF statement to the script

param1: First parameter, type RegisterType or I0Type
index: Index (integer)

Request Parameters param?2: Second parameter, type RegisterType, |OType, or OtherType
value: Value, type index, number, string, or I0Status

operatorType: Boolean operator, default is equal

Return Value StatusCode: Result of function execution

4.10.12 ELSE Instruction

Method Name BasScript.BasLogical .ELSE()

Description Adds a logical ELSE statement to the script
Request Parameters None

Return Value StatusCode: Result of function execution

4.10.13 END _IF End Conditional Instruction

Method Name BasScript.BasLogical.END_IF()
Description Ends the logical IF statement

Request Parameters None

Return Value StatusCode: Result of function execution

4.10.14 WHILE Loop Instruction

Copyright © 2026-present Agilebot Robotics Co., Ltd. 234 /283

4.10 BasScript Script Program Class | Agilebot Robot SDK

Method Name BasScript.BasLogical. WHILE(param1, index, param2, value, operatorType)
Description Adds a logical WHILE statement to the script

param1: First parameter, type RegisterType or I0Type
index: Index (integer)

Request Parameters param?2: Second parameter, type RegisterType, |OType, or OtherType
value: Value, type index, number, string, or I0Status

operatorType: Boolean operator, default is equal

Return Value StatusCode: Result of function execution

4.10.15 END_WHILE End Loop Instruction

Method Name BasScript.BasLogical. END_WHILE()
Description Ends the logical While statement
Request Parameters None

Return Value StatusCode: Result of function execution

4.10.16 SWITCH Multi-Branch Selection Instruction

Method Name BasScript.BasLogical. SWITCH(param, index)
Description Adds a logical SWITCH statement to the script

param: Parameter, type RegisterType or IOType
Request Parameters)
index: Index of the parameter

Return Value StatusCode: Result of function execution

4.10.17 CASE Branch Instruction

Copyright © 2026-present Agilebot Robotics Co., Ltd. 235/ 283

4.10 BasScript Script Program Class | Agilebot Robot SDK

Method Name BasScript.BasLogical.CASE(param, value)
Description Adds a logical CASE statement to the script

param: Parameter, type RegisterType, I0Type, or OtherType
Request Parameters) .
value: Value, type index, number, string

Return Value StatusCode: Result of function execution

4.10.18 DEFAULT Branch Instruction

Method Name BasScript.BasLogical. DEFAULT()

Description Adds a logical DEFAULT statement to the script
Request Parameters None

Return Value StatusCode: Result of function execution

4.10.19 END_SWITCH End Multi-Branch Selection Instruction

Method Name BasScript.BasLogical. END_SWITCH()
Description Ends the logical SWITCH statement
Request Parameters None

Return Value StatusCode: Result of function execution

4.10.20 SKIP_CONDITION Skip Condition Instruction

BasScript.BasLogical.SKIP_CONDITION(param1, index, param2, value,
Method Name
operatorType)

Description Adds a logical SKIP CONDITION statement to the script

Copyright © 2026-present Agilebot Robotics Co., Ltd.

236 /283

4.10 BasScript Script Program Class | Agilebot Robot SDK

BasScript.BasLogical.SKIP_CONDITION(param1, index, param2, value,
Method Name
operatorType)

param1: First parameter, type RegisterType or I0Type

index: Index of parameter 1

Request
ik param2: Second parameter, type RegisterType, IOType, or OtherType
Parameters)]
value: Value, type index, number, string, or I0Status
operatorType: Boolean operator, default is equal
Return Value StatusCode: Result of function execution

4.10.21 WAIT Wait Condition Instruction

Method Name BasScript.BasStructure.WAIT(param1, index, param2, value, operatorType)
Description Adds a logical WAIT COND statement to the script

param1: First parameter, type RegisterType or I0Type
index: Index of parameter 1

Request Parameters param?2: Second parameter, type ValuesType, IOType, or OtherType
value: Value, type index, number, string, or IOStatus

operatorType: Boolean operator, default is equal

Return Value StatusCode: Result of function execution

4.10.22 WAIT_TIME Wait Time Instruction

Method Name BasScript.BasStructure. WAIT_TIME(param, value)
Description WAIT TIME waits for a certain amount of time

param: Parameter type
Request Parameters)]
value: Time value to wait

Return Value StatusCode: Result of function execution

Copyright © 2026-present Agilebot Robotics Co., Ltd. 2371283

4.10 BasScript Script Program Class | Agilebot Robot SDK

4.10.23 GOTO Jump Instruction

Method Name BasScript.BasLogical.GOTO(index)
Description GOTO jump statement

Request Parameters index: Index of the target label

Return Value StatusCode: Result of function execution

4.10.24 LABEL Instruction

Method Name BasScript.BasLogical.LABEL(index)
Description LABEL statement

Request Parameters index: Index of the label

Return Value StatusCode: Result of function execution

4.10.25 BREAK Break Out of Loop Instruction

Method Name BasScript.BasLogical. BREAK()
Description BREAK statement

Request Parameters None

Return Value StatusCode: Result of function execution

4.10.26 CONTINUE Skip Loop Instruction

Copyright © 2026-present Agilebot Robotics Co., Ltd. 238 /283

4.10 BasScript Script Program Class | Agilebot Robot SDK

Method Name BasScript.BasLogical. CONTINUE()
Description CONTINUE statement

Request Parameters None

Return Value StatusCode: Result of function execution

4.10.27 PAUSE Instruction

Method Name BasScript.BasStructure.PAUSE()
Description PAUSE statement

Request Parameters None

Return Value StatusCode: Result of function execution

4.10.28 ABORT Instruction

Method Name BasScript.BasStructure.ABORT()
Description ABORT statement

Request Parameters None

Return Value StatusCode: Result of function execution

4.10.29 CALL Synchronous Program Call Instruction

Method Name BasScript.BasStructure.CALL(name)
Description CALL synchronous program call
Request Parameters name: Program name

Copyright © 2026-present Agilebot Robotics Co., Ltd. 239/ 283

4.10 BasScript Script Program Class | Agilebot Robot SDK

Method Name BasScript.BasStructure.CALL(name)

Return Value StatusCode: Result of function execution

4.10.30 RUN Asynchronous Program Call Instruction

Method Name BasScript.BasStructure.RUN(name)
Description RUN asynchronous program call
Request Parameters name: Program name

Return Value StatusCode: Result of function execution

4.10.31 LOAD Load Program Instruction

Method Name BasScript.BasStructure.LOAD(param, value)
Description LOAD load program

param: Parameter, R register, SR register, number, or string
Request Parameters)
value: Value of the parameter, number or string

Return Value StatusCode: Result of function execution

4.10.32 UNLOAD Unload Program Instruction

Method Name BasScript.BasStructure.UNLOAD(param, value)
Description UNLOAD unload program

param: Parameter, R register, SR register, number, or string
Request Parameters)
value: Value of the parameter, number or string

Return Value StatusCode: Result of function execution

Copyright © 2026-present Agilebot Robotics Co., Ltd. 240/ 283

4.10 BasScript Script Program Class | Agilebot Robot SDK

4.10.33 EXEC Execute Program Instruction

Method Name BasScript.BasStructure.EXEC(param, value)
Description EXEC execute program

param: Parameter, R register, SR register, number, or string
Request Parameters]
value: Value of the parameter, number or string

Return Value StatusCode: Result of function execution

4.10.34 OPEN Open Socket Connection Instruction

Method Name BasScript.BasSocket.OPEN(index)
Description SOCKET OPEN open socket connection
Request Parameters index: SK register index

Return Value StatusCode: Result of function execution

4.10.35 CLOSE Close Socket Connection Instruction

Method Name BasScript.BasSocket.CLOSE(index)
Description SOCKET CLOSE close socket connection
Request Parameters index: SK register index

Return Value StatusCode: Result of function execution

4.10.36 CONNECT Socket Connection Instruction

Copyright © 2026-present Agilebot Robotics Co., Ltd. 241 / 283

4.10 BasScript Script Program Class | Agilebot Robot SDK

Method Name BasScript.BasSocket. CONNECT(index)
Description SOCKET CONNECT connect socket
Request Parameters index: SK register index

Return Value StatusCode: Result of function execution

4.10.37 SEND Send Socket Data Instruction

Method Name BasScript.BasSocket.SEND(index, msgType, value)
Description SOCKET SEND send data via socket

index: SK register index
Request Parameters msgType: Message type

value: Message content or index

Return Value StatusCode: Result of function execution

4.10.38 RECV Receive Socket Data Instruction

Method Name BasScript.BasSocket.RECV(index, msgLength, msgType, value)
Description SOCKET RECV receive socket data

index: SK register index

msglLength: Message length
Request Parameters
msgType: Message type

value: Message content or index

Return Value StatusCode: Result of function execution

4.10.39 READ_MH Read Modbus Holding Register Instruction

Copyright © 2026-present Agilebot Robotics Co., Ltd. 242 [283

4.10 BasScript Script Program Class | Agilebot Robot SDK

Method Name BasScript.BasModbus.READ_MH(index, id, address, length, rindex)
Description ReadMH read Modbus holding register

index: Channel index
id: Modbus ID

Request Parameters address: Register address
length: Register length

rindex: R register index to write to

Return Value StatusCode: Result of function execution

4.10.40 READ_MI Read Modbus Input Register Instruction

Method Name BasScript.BasModbus.READ_MiI(index, id, address, length, rindex)
Description ReadMI read Modbus input register

index: Channel index
id: Modbus ID

Request Parameters address: Register address
length: Register length

rindex: R register index to write to

Return Value StatusCode: Result of function execution

4.10.41 WRITE_MH Write Modbus Holding Register Instruction

Method Name BasScript.BasModbus.WRITE_MH(index, id, address, length, valueType, value)
Description ModbusWriteMH write to Modbus holding register
Request Parameters index: Channel index

id: Modbus ID

address: Register address

length: Register length

Copyright © 2026-present Agilebot Robotics Co., Ltd. 243 /283

4.10 BasScript Script Program Class | Agilebot Robot SDK

Method Name BasScript.BasModbus.WRITE_MH(index, id, address, length, valueType, value)

valueType: Value type

value: Value or index

Return Value StatusCode: Result of function execution

4.10.42 FIND Find Vision Program Instruction

Method Name BasScript.BasVision.FIND(name)
Description VISION FIND find vision program
Request Parameters name: Vision program name

Return Value StatusCode: Result of function execution

4.10.43 GET_OFFSET Get Vision Program Offset Instruction

Method Name BasScript.BasVision.GET_OFFSET(name, index, labellndex)
Description VISION GET OFFSET get vision program offset

name: Vision program name
Request Parameters index: Vision register index

labellndex: Label index

Return Value StatusCode: Result of function execution

4.10.44 GET_QUANTITY Get Vision Program Result Instruction

Method Name BasScript.BasVision.GET_QUANTITY(name, index)

Description VISION GET QUANTITY get vision program result

Copyright © 2026-present Agilebot Robotics Co., Ltd. 244 [283

4.10 BasScript Script Program Class | Agilebot Robot SDK

Method Name BasScript.BasVision.GET_QUANTITY(name, index)

name: Vision program name
Request Parameters]))
index: R register index

Return Value StatusCode: Result of function execution

4.10.45 SetParam Set Parameter Instruction

Method Name BasScript.SetParam(type, valueType, value)
Description SET PARAM set parameter

type: Parameter type

Request Parameters valueType: Value type
value: Value
Return Value StatusCode: Result of function execution

Copyright © 2026-present Agilebot Robotics Co., Ltd. 245 [283

4.11 Coordinate System Class | Agilebot Robot SDK

4.11 Coordinate System Class

4.11.1 Getting Information of a Specified Coordinate System

Method Name CoordinateSystem.Get(CoordinateType type , int index)

o Gets the corresponding coordinate system information based on the
Description o))
specified coordinate system type and index.

type : CoordinateType Coordinate system type
Request Parameters]])
index :int Coordinate system index

Coordinate: Coordinate system information data
Return Value _)
StatusCode: Get operation execution result

Compatible robot Collaborative (Copper): v7.5.0.0+

software version Industrial (Bronze): v7.5.0.0+

4.11.2 Updating Coordinate System Information

Method Name CoordinateSystem.Update(CoordinateType type , Coordinate coordinate)

o Updates the corresponding coordinate system based on the specified
Description))))
coordinate system type and coordinate system information.

type : CoordinateType Coordinate system type
Request Parameters)) i)
coordinate : Coordinate Coordinate system information to be updated

Return Value StatusCode: Update operation execution result
Compatible robot Collaborative (Copper): v7.5.0.0+
software version Industrial (Bronze): v7.5.0.0+

Copyright © 2026-present Agilebot Robotics Co., Ltd. 246 [/ 283

4.11 Coordinate System Class | Agilebot Robot SDK

4.11.3 Adding Coordinate System Information

Method Name CoordinateSystem.Add(CoordinateType type , Coordinate coordinate)

o Adds a new coordinate system based on the specified coordinate system
Description)))
type and coordinate system information.

type : CoordinateType Coordinate system type
Request Parameters)))]
coordinate : Coordinate Coordinate system information to be added

Return Value StatusCode: Add operation execution result
Compatible robot Collaborative (Copper): v7.5.0.0+
software version Industrial (Bronze): v7.5.0.0+

4.11.4 Deleting Information of a Specified Coordinate System

Method Name CoordinateSystem.Delete(CoordinateType type ,int index)

o Deletes the corresponding coordinate system information based on the
Description .))
specified coordinate system type and index.

type : CoordinateType Coordinate system type
Request Parameters]]]
index :int Coordinate system index

Return Value StatusCode: Delete operation execution result
Compatible robot Collaborative (Copper): v7.5.0.0+
software version Industrial (Bronze): v7.5.0.0+

4.11.5 Getting a List of Coordinate System Information

Copyright © 2026-present Agilebot Robotics Co., Ltd. 247 | 283

4.11 Coordinate System Class | Agilebot Robot SDK

Method Name CoordinateSystem.GetCoordinateList(CoordinateType type)

o Gets a list of all coordinate system information based on the specified
Description]
coordinate system type.

Request Parameters type : CoordinateType Coordinate system type

List<[CoordSummary][#3.22.2]>: Coordinate system information list
Return Value])
StatusCode: Get operation execution result

Compatible robot Collaborative (Copper): v7.5.0.0+

software version Industrial (Bronze): v7.5.0.0+

Example Code

CoordinateSystem/TFCoordinateTest.cs

cs
using Agilebot.IR;

using Agilebot.IR.CoordinateSystem;
using Agilebot.IR.Types;

public class TFCoordinateTest

{

/// <summary>
/77 WK TF AR RETEE. TN, SREGIER . IRECAA AR AR SRR B R AR
/// </summary>
public static StatusCode Run(
string controllerlIP,

bool uselLocalProxy = true

/1 [ZH] WIassEhRsplas A

// [EN] Initialize the Agilebot robot

Arm controller = new Arm(
controllerIP,

uselLocalProxy

)s
[/ [ZH] EESEEEEPLEE A

// [EN] Connect to the Agilebot robot

StatusCode code = controller.ConnectSync();

Copyright © 2026-present Agilebot Robotics Co., Ltd. 248 [/ 283

4.11 Coordinate System Class | Agilebot Robot SDK

Console.WritelLine(
code != StatusCode.OK
? code.GetDescription()

: "IERAT)/Successfully connected.”
)

if (code != StatusCode.OK)
{

return code;

try

// [ZH] #E&D S E
// [EN] Prepare test data
var poseData = new List<Position>
{
new Position(
847.0999429718556,
166.7999999999656,
276.8195498896624,
90,
9,
-70
)s
new Position(
809.0227439212846,
166.79999999994843,
459.80354972094295,
90,
9,
-45
)s
new Position(
717.1223240422377,
166.79999999993265,
654.0891675073312,
90,
9,
-30
)>

new Position(

Copyright © 2026-present Agilebot Robotics Co., Ltd. 249 /283

4.11 Coordinate System Class | Agilebot Robot SDK

572.917828754028,
166.79999999992168,
825.1862002007621,

90,
9,
-40
)
}s
Console.WritelLine(
"FFHATFAR R 2l /Starting TF Coordinate Test"
)s

/] [ZH] THEARR R
// [EN] Calculate coordinate system
Coordinate calculatedCoord = new Coordinate();
(Position coord, StatusCode calculateCode) =
controller.CoordinateSystem.Calculate(
CoordinateType.ToolCoordinate,

poseData

IE

if (code == StatusCode.OK)

{
Console.WritelLine(
"THETFALAR R /Calculate TF Coordinate Success"
)s
}
else
{
Console.WritelLine(
$"THETFALAR R LM /Calculate TF Coordinate Failed: {code.GetDesc
ription()}"
)s
return code;
}

calculatedCoord.Id = 5;

calculatedCoord.Data = coord;

// [ZH] WHERWT REAFAE I A-HR 2
// [EN] Delete existing coordinate if exists

StatusCode deleteCode =

Copyright © 2026-present Agilebot Robotics Co., Ltd. 250/ 283

4.11 Coordinate System Class | Agilebot Robot SDK

controller.CoordinateSystem.Delete(
CoordinateType.ToolCoordinate,
calculatedCoord.Id
)s
Console.WritelLine(
$" BB 2L b5 2 /Delete Existing Coordinate: {deleteCode.GetDescript

ion()}"
)s
// [ZH] &InAEdR R
// [EN] Add coordinate system
StatusCode addCode =
controller.CoordinateSystem.Add(
CoordinateType.ToolCoordinate,
calculatedCoord
)s
if (addCode == StatusCode.OK)
{
Console.WritelLine(
"UNINTFAL R R iZ)/Add TF Coordinate Success"
)3
}
else
{
Console.WritelLine(
$"INSINTFAL AR R LM /Add TF Coordinate Failed: {addCode.GetDescrip
tion()}"
)3
return addCode;
}

/] [ZH] SREUAABR R AR
// [EN] Get coordinate list
List<CoordSummary> listRes;
(listRes, code) =
controller.CoordinateSystem.GetCoordinatelList(
CoordinateType.ToolCoordinate
)s
if (code == StatusCode.OK)
{
Console.WritelLine(
"SRENTFAL R R 41K KT /Get TF Coordinate List Success”

Copyright © 2026-present Agilebot Robotics Co., Ltd. 251 /283

4.11 Coordinate System Class | Agilebot Robot SDK

)s
Console.WritelLine(

$"ALbR R YK E & /Coordinate List Count: {listRes.Count}"
)s

else

Console.WritelLine(
$"IRELTFAL AR 229136 2K /Get TF Coordinate List Failed: {code.GetD
escription()}”
)s

return code;

/7 [ZH] ZRECEAARDR &

// [EN] Get single coordinate

Coordinate getCoord;

(getCoord, code) =
controller.CoordinateSystem.Get(

CoordinateType.ToolCoordinate,

calculatedCoord.Id
)3
if (code == StatusCode.OK)
{
Console.WritelLine(
"SRELTFAL AR R /Get TF Coordinate Success™
)3
Console.WriteLine(
$"AbR R4 FR/Coordinate Name: {getCoord.Name}"
)3
}
else
{
Console.WritelLine(
$"IRENTFALAR R KW /Get TF Coordinate Failed: {code.GetDescriptio
n()}"
)s
return code;
}

// [ZH] BEHAIR R
// [EN] Update coordinate system

Copyright © 2026-present Agilebot Robotics Co., Ltd. 252 /283

4.11 Coordinate System Class | Agilebot Robot SDK

getCoord.Name = "test";
StatusCode updateCode =
controller.CoordinateSystem.Update(
CoordinateType.ToolCoordinate,
getCoord
)s
if (updateCode == StatusCode.OK)
{

Console.WritelLine(
"HHETFALAR R Tl /Update TF Coordinate Success"
)

else

Console.WritelLine(
$" BB TFAA bR 225 /Update TF Coordinate Failed: {updateCode.GetD
escription()}"
)s

return updateCode;

/] [ZH] MHBRARFR 2

// [EN] Delete coordinate system

deleteCode = controller.CoordinateSystem.Delete(
CoordinateType.ToolCoordinate,

calculatedCoord.Id

)
if (deleteCode == StatusCode.OK)
{
Console.WritelLine(
"MHERTFAR R & Il /Delete TF Coordinate Success"
)
}
else
{

Console.WritelLine(
$"MIBRTFAL AR R LM /Delete TF Coordinate Failed: {deleteCode.GetD

escription()}"
)

return deleteCode;

Copyright © 2026-present Agilebot Robotics Co., Ltd. 253 /283

4.11 Coordinate System Class | Agilebot Robot SDK

Console.WritelLine(

"TFALAR RIR 52 %/ TF Coordinate Test Completed"

)s
}
catch (Exception ex)
{
Console.WritelLine(
$ AT IR G R A SRR /Exception occurred during execution: {ex.Messag
e}”
)s
code = StatusCode.OtherReason;
}
finally
{
/] [ZH] RKHAZER
// [EN] Close the connection
StatusCode disconnectCode =
controller.Disconnect();
if (disconnectCode != StatusCode.OK)
{
Console.WritelLine(
disconnectCode.GetDescription()
)3
if (code == StatusCode.OK)
code = disconnectCode;
}
}
return code;
}
}

Copyright © 2026-present Agilebot Robotics Co., Ltd. 254 [283

4.12 Robot Jogging Motion | Agilebot Robot SDK

4.12 Robot Jogging Motion

4.12.1 Robot Jogging Motion

Jogging.Move(int ajNum , MoveMode moveMode , double stepLength =0,
Method Name
double stepAngle = 0)

Description Controls the robot to move continuously or by a specified increment.

ajNum :int, value 1-6 corresponds to joint numbers [1-6], or X, Y, z, X, ry, rz in
Cartesian space, depending on the currently selected coordinate system. Positive
values indicate movement in the positive direction, negative values indicate
movement in the negative direction.
Request moveMode : MoveMode, motion mode of the manipulator; supports incremental
Parameters or continuous motion.
stepLength : double, step length in mm or degrees (only effective in incremental
motion mode).
stepAngle : double, step angle in degrees (only effective in incremental motion

mode).
Return Value StatusCode: Status code indicating whether the jogging operation succeeded.

Compatible .
Collaborative (Copper): v7.5.0.0+

Industrial (Bronze): v7.5.0.0+

Robot Software

Versions

Example Code

Jogging/StepJogging.cs

cs
using Agilebot.IR;
using Agilebot.IR.Types;

public class StepJogging

{
public static StatusCode Run(

string controllerIP,

Copyright © 2026-present Agilebot Robotics Co., Ltd. 255/ 283

4.12 Robot Jogging Motion | Agilebot Robot SDK

bool uselocalProxy = true

/1 [ZH] #IassEhReplas A

// [EN] Initialize the Agilebot robot

Arm controller = new Arm(
controllerIP,

useLocalProxy

)s

// [ZH] EEFEDRPLSEA
// [EN] Connect to the Agilebot robot
StatusCode code = controller.ConnectSync();
Console.WritelLine(
code != StatusCode.OK
? code.GetDescription()

: "IN /Successfully connected. ™
)

if (code != StatusCode.OK)
{

return code;

try

/7 [ZH] SREHLE AR
// [EN] Get robot mode
(UserOpMode opMode, StatusCode opCode) =
controller.GetOpMode();
if (opCode == StatusCode.OK)
{
Console.WriteLine(
$" HaTHlEs AME/Current robot mode: {opMode}"

)s
if (
opMode != UserOpMode.UNLIMITED MANUAL
&& opMode != UserOpMode.LIMIT MANUAL
)
{

Console.WriteLine(
$"RBEE BB AENL B N TF- 520 /Jogging must be in manual mo

Copyright © 2026-present Agilebot Robotics Co., Ltd. 256 / 283

4.12 Robot Jogging Motion | Agilebot Robot SDK

dell
)
return StatusCode.OtherReason;
}
}
else
{
Console.WritelLine(
$"IREHL 2 AR UK /Failed to get robot mode: {opCode.GetDescri
ption()}"
)
¥

/] [ZH] WE BB RBUSEN S

// [EN] Set step jogging parameters

int ajNum = 1; // 375, EHERIETREEE)

MoveMode moveMode = MoveMode.Stepping; // H.Fizzhfizl
double stepLength = 5.9; // B, HALAmmELA
double stepAngle = 5.0; // MM, SALNMAE

Console.WritelLine(

"H R P R #UE) /Starting Step Jogging”

)
Console.WritelLine(
$" #5753 /Axis Number: {ajNum}"
)s
Console.WriteLine(
$"izsh#i/Move Mode: {moveMode}"
)s
Console.WriteLine(
$" UK /Step Length: {stepLength}"
)s

// [ZH] PATHRBREEE)
// [EN] Execute step jogging movement
code = controller.Jogging.Move(
ajNum,
moveMode,
stepLength,
stepAngle
)s
if (code == StatusCode.OK)

Copyright © 2026-present Agilebot Robotics Co., Ltd. 257/ 283

4.12 Robot Jogging Motion | Agilebot Robot SDK

Console.WritelLine(
"HOD IR HOIE B AT) /Step Jogging Executed Successfully"
)s
Console.WritelLine(
$"h{ajNum} [l IE 77 M F5 5 {stepLength} #.{ii /Axis {ajNum} moved {step
Length} units in positive direction”

)5

else

Console.WritelLine(
$" DR BB B AT R /Step Jogging Execution Failed: {code.GetD
escription()}"

)5

/1 [ZH] 5t — AR AT RIAiE3)
// [EN] Wait one second then execute reverse movement

Thread.Sleep(1000);

/] [ZH] PAT A H I E)
// [EN] Execute reverse step movement
int reverseAjNum = -ajNum; // TEEKRGTTRIEE)

code = controller.Jogging.Move(

reverseAjNum,
moveMode,
stepLength,
stepAngle
)3
if (code == StatusCode.OK)
{

Console.WritelLine(
"I] D R HUE BT LTl /Reverse Step Jogging Executed Successfu
11y"
)s
Console.WriteLine(
$"#l{Math.Abs (reverseAjNum) } a1 77 [\ # 5l {stepLength} A /Axis {M
ath.Abs(reverseAjNum)} moved {stepLength} units in negative direction”

)5

else

Copyright © 2026-present Agilebot Robotics Co., Ltd.

258 /283

4.12 Robot Jogging Motion | Agilebot Robot SDK

Console.WritelLine(

$" 2 5] B R BOB B AT K /Reverse Step Jogging Execution Failed:

{code.GetDescription()}"

)s
}
}
catch (Exception ex)
{
Console.WritelLine(
$ AT G R A4 SRR /Exception occurred during execution: {ex.Messag
e}”
)s
code = StatusCode.OtherReason;
}
finally
{
/] [ZH] RKHAZER
// [EN] Close the connection
StatusCode disconnectCode =
controller.Disconnect();
if (disconnectCode != StatusCode.OK)
{
Console.WritelLine(
disconnectCode.GetDescription()
)3
if (code == StatusCode.OK)
code = disconnectCode;
}
}
return code;
}
}

4.12.2 Multi-Axis Simultaneous Continuous Motion

Copyright © 2026-present Agilebot Robotics Co., Ltd.

259/ 283

4.12 Robot Jogging Motion | Agilebot Robot SDK

Method Name Jogging.MultiMove(int[] ajNums)
Description Controls the robot to perform continuous motion on multiple axes simultaneously

ajNums :int[], values 1-6 correspond to joint numbers [1-6], or X, y, z, rx, ry, rz in
Request Cartesian space, depending on the currently selected coordinate system. Positive
Parameters values indicate movement in the positive direction, negative values indicate

movement in the negative direction.
Return Value StatusCode: Status code indicating whether the jogging operation succeeded.

Compatible]
Collaborative (Copper): v7.5.0.0+

Industrial (Bronze): v7.5.0.0+

Robot Software

Versions

Example Code

Jogging/MultiJogging.cs

cs
using Agilebot.IR;

using Agilebot.IR.Jogging;
using Agilebot.IR.Types;

public class MultiJogging
{
public static StatusCode Run(
string controllerIP,

bool uselLocalProxy = true

/1 [ZH] Wl sEh R plas A

// [EN] Initialize the Agilebot robot

Arm controller = new Arm(
controllerIP,

useLocalProxy

);

/7 [ZH] EEFEDRHLEGA
// [EN] Connect to the Agilebot robot
StatusCode code = controller.ConnectSync();

Console.WritelLine(

Copyright © 2026-present Agilebot Robotics Co., Ltd. 260/ 283

4.12 Robot Jogging Motion | Agilebot Robot SDK

code != StatusCode.OK
? code.GetDescription()
. "IERAT)/Successfully connected.”
)

if (code != StatusCode.OK)

{
return code;
}
try
{
// [ZH] FREWLE AL
// [EN] Get robot mode
(UserOpMode opMode, StatusCode opCode) =
controller.GetOpMode();
if (opCode == StatusCode.OK)
{
Console.WritelLine(
$" 4 ETALEE AR 20/Current robot mode: {opMode}"
)3
if (
opMode != UserOpMode.UNLIMITED MANUAL
&& opMode != UserOpMode.LIMIT_MANUAL
)
{
Console.WriteLine(
$"RBEE BB AENL S N T30 /Jogging must be in manual mo
de"
)
return StatusCode.OtherReason;
}
}
else
{
Console.WritelLine(
$"SREH LA N /Failed to get robot mode: {opCode.GetDescri
ption()}"
)s
}
Console.WritelLine(

Copyright © 2026-present Agilebot Robotics Co., Ltd. 261 /283

4.12 Robot Jogging Motion | Agilebot Robot SDK

"FHiG £ fln#UZE5 /Starting Multi-axis Jogging"

)s
Console.WritelLine(

"IN Z HIZ 5 /Demo multi-axis step movements"
)s

// [ZH] ZHhiz5)
// [EN] Multi-axis step movement
Console.WritelLine(

"\n=== Z£Hliz5)/Multi-axis Step Movement ==="
)s
int[] axes = { 1, 2, 3 }; // IEJjAizz)

code = controller.Jogging.MultiMove(axes);
if (code == StatusCode.OK)
{
Console.WritelLine(
"ELLRHIE) JE BT /Continuous Jogging Started Successfully”
)3
Console.WriteLine(

"iz5)3F 5 B 315 1k /Moving for 3 seconds then auto stop"
)

// [ZH] B3h3+)
// [EN] Move for 3 seconds
Thread.Sleep(3000);

// [ZH] FIER#iss)
// [EN] Stop jogging movement
controller.Jogging.Stop();
Console.WritelLine(

"INFEE) 515 /Jogging Movement Stopped"
)3

else

Console.WritelLine(
$"IESRHEE BN B LM /Continuous Jogging Start Failed: {code.Ge
tDescription()}"
)s

Copyright © 2026-present Agilebot Robotics Co., Ltd.

262 /283

4.12 Robot Jogging Motion | Agilebot Robot SDK

Console.WritelLine(

"\nZHR 2B 5E K /Multi-axis Jogging Completed"

)s
}
catch (Exception ex)
{
Console.WritelLine(
$ AT IR G R A SRR /Exception occurred during execution: {ex.Messag
e}”
)s
code = StatusCode.OtherReason;
}
finally
{
/] [ZH] RKHAZER
// [EN] Close the connection
StatusCode disconnectCode =
controller.Disconnect();
if (disconnectCode != StatusCode.OK)
{
Console.WritelLine(
disconnectCode.GetDescription()
)3
if (code == StatusCode.OK)
code = disconnectCode;
}
}
return code;
}
}

4.12.3 Stop Robot Jogging Motion

Method Name Jogging.Stop()

Description Stops the robot jogging motion.

Copyright © 2026-present Agilebot Robotics Co., Ltd. 263 /283

4.12 Robot Jogging Motion | Agilebot Robot SDK

Method Name Jogging.Stop()
Request Parameters None
Return Value void

This method is only required to stop motion when in continuous

Notes

mode.
Compatible Robot Software Collaborative (Copper): v7.5.0.0+
Versions Industrial (Bronze): v7.5.0.0+

Example Code

Jogging/ContinuousJogging.cs

cs
using Agilebot.IR;

using Agilebot.IR.Types;

public class ContinuousJogging
{
public static StatusCode Run(
string controllerIP,

bool uselLocalProxy = true

/1 [ZH] Wl sEh R plas A

// [EN] Initialize the Agilebot robot

Arm controller = new Arm(
controllerIP,

useLocalProxy

);

// [ZH] EEEDRPLASA
// [EN] Connect to the Agilebot robot
StatusCode code = controller.ConnectSync();
Console.WritelLine(
code != StatusCode.OK
? code.GetDescription()
"EHE T /Successfully connected.”

)5

Copyright © 2026-present Agilebot Robotics Co., Ltd. 264 [/ 283

4.12 Robot Jogging Motion | Agilebot Robot SDK

if (code != StatusCode.OK)

{
return code;
}
try
{
// [ZH] FREWLE AL
// [EN] Get robot mode
(UserOpMode opMode, StatusCode opCode) =
controller.GetOpMode();
if (opCode == StatusCode.OK)
{
Console.WriteLine(
$" YA HL2E A /Current robot mode: {opMode}"
)s
if (
opMode != UserOpMode.UNLIMITED MANUAL
&& opMode != UserOpMode.LIMIT_MANUAL
)
{
Console.WriteLine(
$"RBOE B L AENL S N T30 /Jogging must be in manual mo
de"
)
return StatusCode.OtherReason;
}
}
else
{
Console.WritelLine(
$"AREH LA N K /Failed to get robot mode: {opCode.GetDescri
ption()}"
)s
}

// [ZH] WERHIZHNSE
// [EN] Set jogging parameters
int ajNum = 3; // #iF5, EHERRIETMIE3)

MoveMode moveMode = MoveMode.Continuous; // ZEZEiza)

Copyright © 2026-present Agilebot Robotics Co., Ltd. 265/ 283

4.12 Robot Jogging Motion | Agilebot Robot SDK

Console.WritelLine(

" iRESN) /Starting Continuous Jogging”

)s
Console.WritelLine(
$" 475 /Axis Number: {ajNum}"
)s
Console.WritelLine(
$" 281 /Move Mode: {moveMode}"
)s

// [ZH] JB3hESRHEEE)
// [EN] Start continuous jogging movement
code = controller.Jogging.Move(ajNum, moveMode);
if (code == StatusCode.OK)
{
Console.WritelLine(
"ELLRHIE) JE BT /Continuous Jogging Started Successfully”
)s
Console.WriteLine(

"iz5)3F 5 B 315 1k /Moving for 3 seconds then auto stop"
)

// [ZH] i83h3%)
// [EN] Move for 3 seconds
Thread.Sleep(3000);

// [ZH] FIER#iss)
// [EN] Stop jogging movement
controller.Jogging.Stop();
Console.WritelLine(

"Nz B 5 1k /Jogging Movement Stopped"
)3

else

Console.WritelLine(
$"ESNHEEFN B LM/ Continuous Jogging Start Failed: {code.Ge
tDescription()}"

)5

}

catch (Exception ex)

Copyright © 2026-present Agilebot Robotics Co., Ltd. 266 / 283

4.12 Robot Jogging Motion | Agilebot Robot SDK

{
Console.WritelLine(
$"PATIERE T R E 7 /Exception occurred during execution: {ex.Messag
e}”
)s
code = StatusCode.OtherReason;
}
finally
{
/] [ZH] KPS
// [EN] Close the connection
StatusCode disconnectCode =
controller.Disconnect();
if (disconnectCode != StatusCode.OK)
{
Console.WriteLine(
disconnectCode.GetDescription()
)s
if (code == StatusCode.OK)
code = disconnectCode;
}
}
return code;
}
}

Copyright © 2026-present Agilebot Robotics Co., Ltd. 267/ 283

4.13 Robot Subscription & Publish Interface | Agilebot Robot SDK

4.13 Robot Subscription & Publish Interface

4.13.1 Connect to WebSocket Server

Method Name SubPub.Connect()

Description Connects to the robot controller WebSocket server
Request Parameters None

Return Value Task: Asynchronous connection operation result

Collaborative (Copper): v7.7.0.0+

Compatible robot software version]
Industrial (Bronze): v7.7.0.0+

4.13.2 Disconnect from WebSocket Server

Method Name SubPub.Disconnect()

Description Disconnects from the robot controller WebSocket server
Request Parameters None

Return Value Task: Asynchronous disconnect operation result

Collaborative (Copper): v7.7.0.0+

Compatible robot software version]
Industrial (Bronze): v7.7.0.0+

4.13.3 Subscribe to Robot Status

Copyright © 2026-present Agilebot Robotics Co., Ltd. 268 /283

4.13 Robot Subscription & Publish Interface | Agilebot Robot SDK

SubPub.SubscribeStatus(RobotTopicType[] topicTypes , int
Method Name
frequency = 200)

Description Adds robot status data subscription

topicTypes : RobotTopicType[] List of robot topic types to subscribe
Request Parameters) o . .
frequency :int Subscription frequency in Hz, default is 200

Return Value Task: Asynchronous subscription operation result
Compatible robot software Collaborative (Copper): v7.7.0.0+
version Industrial (Bronze): v7.7.0.0+

4.13.4 Subscribe to Registers

SubPub.SubscribeRegister(RegTopicType regType , int[] reglds , int
Method Name
frequency = 200)

Description Adds register data subscription

regType : RegTopicType Register type
Request Parameters reglds : int[] List of register IDs to subscribe

frequency :int Subscription frequency in Hz, default is 200

Return Value Task: Asynchronous subscription operation result
Compatible robot Collaborative (Copper): v7.7.0.0+
software version Industrial (Bronze): v7.7.0.0+

4.13.5 Subscribe to I/0 Signals

SubPub.SubscribelO((I0TopicType, int)[] ioList , int frequency =
200)

Method Name

Description Subscribes to |10 signal data, including digital inputs and outputs

ioList : (IOTopicType, int)[] 1O list, each element is (IO type, IO ID)

Request Parameters) o])
frequency :int Subscription frequency in Hz, default is 200

Copyright © 2026-present Agilebot Robotics Co., Ltd. 269 /283

4.13 Robot Subscription & Publish Interface | Agilebot Robot SDK

SubPub.SubscribelO((I0TopicType, int)[] ioList , int frequency =
Method Name

200)
Return Value Task: Asynchronous subscription operation result
Compatible robot software Collaborative (Copper): v7.7.0.0+
version Industrial (Bronze): v7.7.0.0+

4.13.6 Start Receiving Messages

SubPub.StartReceiving(Func<Dictionary<string, object>, Task>
Method Name
onMessageReceived)

o Starts receiving subscription messages and processes received data through
Description)
callback function

onMessageReceived : Func<Dictionary<string, object>, Task> Message
Request Parameters o)
receiving callback function

Return Value Task: Asynchronous receiving task
Compatible robot Collaborative (Copper): v7.7.0.0+
software version Industrial (Bronze): v7.7.0.0+

Example Code

SubPub/CallbackReceiving.cs

cs
using Agilebot.IR;

using Agilebot.IR.SubPub;
using Agilebot.IR.Types;

public class CallbackReceiving

{
public static StatusCode Run(

string controllerIP,

bool uselLocalProxy = true

Copyright © 2026-present Agilebot Robotics Co., Ltd. 270/ 283

4.13 Robot Subscription & Publish Interface | Agilebot Robot SDK

/1 [ZH] Wl HsEh s plas A

// [EN] Initialize the Agilebot robot

Arm controller = new Arm(
controllerIP,

useLocalProxy

);

// [ZH] EEEDRPLESA
// [EN] Connect to the Agilebot robot
StatusCode code = controller.ConnectSync();
Console.WritelLine(
code != StatusCode.OK
? code.GetDescription()
"EE T /Successfully connected.”

)5

/7 [ZH] WIERHEER RIS ASubPub
// [EN] Initialize the Agilebot robot SubPub

var subPub = controller.SubPub;

try
{

Console.WriteLine(
"4 B 7 G Bl /Starting Callback Receiving Test™
)3

// [ZH] #H:EWebSocket/li% 35

// [EN] Connect to WebSocket server
subPub.Connect().Wait();
Console.WriteLine(

"WebSocket %1 /WebSocket Connected Successfully"
)3

// [ZH] ATEMLE RS
// [EN] Subscribe to robot status
var topicTypes = new RobotTopicType[]

{
RobotTopicType.TopicCurrentJoint,
RobotTopicType.TopicRobotStatus,
}s
subPub

.SubscribeStatus(topicTypes, frequency: 100)

Copyright © 2026-present Agilebot Robotics Co., Ltd. 271 /283

4.13 Robot Subscription & Publish Interface | Agilebot Robot SDK

Wait();
Console.WritelLine(

"L MRS T B %I /Robot Status Subscription Successful"
)s

/] [ZH] TR A4
// [EN] Subscribe to registers
var reglds = new int[] { 1, 2, 3 };
subPub
.SubscribeRegister(
RegTopicType.R,
reglds,
frequency: 100
)
Jait();
Console.WritelLine(

"R AF ST % T /Register Subscription Successful"
)

// [ZH] TIIO0
// [EN] Subscribe to IO
var iolList = new (IOTopicType, int)[]

{
(I0TopicType.DI, 0),
(I0TopicType.DO, 1),
}s
subPub
.SubscribeIO(iolList, frequency: 100)
Wait();
Console.WriteLine(
"IOiT B4 %) /I0 Subscription Successful"
)3

int messageCount = 0;
int maxMessages = 10; // U105k iH B JGfs 1k

Console.WriteLine(
" 4h$EURIE . /Starting to receive messages..."

);

// [ZH] FFaaHEBos 8 (Rl o7 =0
// [EN] Start receiving messages (callback method)

Copyright © 2026-present Agilebot Robotics Co., Ltd. 272 /283

4.13 Robot Subscription & Publish Interface | Agilebot Robot SDK

subPub
.StartReceiving(async message =>
{
messageCount++;
Console.WritelLine(
$"\n=== L F|% {messageCount} 4474 E./Received Message #{messag

eCount} ==="

)5

foreach (var kv in message)

{
Console.WritelLine(

$"{kv.Key}: {kv.value}"

)5

}

/7 [ZH] FEWUREHEE B G EshkiT
// [EN] Disconnect after receiving specified number of messages

if (messageCount >= maxMessages)

{

Console.WriteLine(
$" U {maxMessages} 5K B, #E&WITTi%EH:/Received {maxMe
ssages} messages, preparing to disconnect”
)s
subPub.Disconnect().Wait();
Console.WriteLine(
"WebSocketWiFf 1k /WebSocket Disconnected Successfully"

)E

await Task.CompletedTask;

})
Wait();

Console.WriteLine(
" Bl 77 R Bk 52 i/ Callback Receiving Test Completed"

)s

return StatusCode.OK;
}
catch (Exception ex)
{

Console.WritelLine(
$"PATIEFE R A FH /Exception occurred during execution: {ex.Messag

Copyright © 2026-present Agilebot Robotics Co., Ltd.

2731283

4.13 Robot Subscription & Publish Interface | Agilebot Robot SDK

e}ll
)
return StatusCode.OtherReason;

}
finally

{
/] [ZH] KRMEEZ
// [EN] Close the connection
StatusCode disconnectCode =
controller.Disconnect();
if (disconnectCode != StatusCode.OK)
{
Console.WritelLine(
disconnectCode.GetDescription()
)s
if (code == StatusCode.OK)

code = disconnectCode;

4.13.7 Receive Next Text Message

Method Name SubPub.Receive()

Description Receives the next text message and returns it

Request Parameters None

Return Value Task<Dictionary<string, object>>: Received message dictionary

Collaborative (Copper): v7.7.0.0+

Compatible robot software version]
Industrial (Bronze): v7.7.0.0+

Example Code

SubPub/PollingReceiving.cs

Copyright © 2026-present Agilebot Robotics Co., Ltd. 274 | 283

4.13 Robot Subscription & Publish Interface | Agilebot Robot SDK

S
using Agilebot.IR;

using Agilebot.IR.SubPub;
using Agilebot.IR.Types;

public class PollingReceiving
{
public static StatusCode Run(
string controllerIP,

bool uselocalProxy = true

/1 [ZH] W HTE LS A

// [EN] Initialize the Agilebot robot

Arm controller = new Arm(
controllerIP,

useLocalProxy

)5

/1 [ZH] EEFEDRLAE A
// [EN] Connect to the Agilebot robot
StatusCode code = controller.ConnectSync();
Console.WritelLine(
code != StatusCode.OK
? code.GetDescription()
. "R /Successfully connected. "

);

// [ZH] #IassEh L% ASubPub
// [EN] Initialize the Agilebot robot SubPub

var subPub = controller.SubPub;

try
{

Console.WritelLine(
"R 7 Ao Bl /Starting Polling Receiving Test"
)s

// [ZH] &E#:¥IWebSocketfl 45 4%
// [EN] Connect to WebSocket server
subPub.Connect().Wait();

Console.WriteLine(

Copyright © 2026-present Agilebot Robotics Co., Ltd. 2751283

4.13 Robot Subscription & Publish Interface | Agilebot Robot SDK

"WebSocketi##% /%) /WebSocket Connected Successfully"
)

// [ZH] TBMLEE NRES
// [EN] Subscribe to robot status
var topicTypes = new RobotTopicType[]

{
RobotTopicType.TopicCurrentloint,
RobotTopicType.TopicRobotStatus,
}s
subPub
.SubscribeStatus(topicTypes, frequency: 100)
Wait();
Console.WritelLine(
"HLEE JOIRASAT 7 i) /Robot Status Subscription Successful"
);

/] [ZH] T BZF A4
// [EN] Subscribe to registers
var reglds = new int[] { 1, 2, 3 };
subPub
.SubscribeRegister(
RegTopicType.R,
reglds,
frequency: 100
)
JWait();
Console.WriteLine(

A AT KTl /Register Subscription Successful"
)3

// [ZH] T¥I0
// [EN] Subscribe to IO
var iolList = new (IOTopicType, int)[]

{
(I0TopicType.DI, 0),
(IOTopicType.DO, 1),

}s

subPub
.SubscribeIO(ioList, frequency: 100)
Wait();

Console.WritelLine(

Copyright © 2026-present Agilebot Robotics Co., Ltd. 276 /283

4.13 Robot Subscription & Publish Interface | Agilebot Robot SDK

"IOV] 4T /10 Subscription Successful"
)

int messageCount = 0;

int maxMessages = 10; // U104 B G151k

Console.WritelLine(
"TFHEE RN B /Starting to poll messages..."
)

// [ZH] PEAEUCH B B 2A R R

// [EN] Loop to receive messages until reaching desired count

do

{
messageCount++;
try
{

/7 [ZH] BRI B

// [EN] Receive single message

var message = subPub.Receive().Result;
Console.WriteLine(

$"\n=== UL {messageCount} 45 5 /Received Message #{messag

eCount} ==="
)
foreach (var kv in message)
{
Console.WriteLine(
$"{kv.Key}: {kv.value}"
)s
}
}
catch (Exception ex)
{
Console.WritelLine(
$" B BN R A2 S /Exception while receiving message: {ex.
Message}"
)s
break;
}

} while (messageCount < maxMessages);

// [ZH] WroTiEss

Copyright © 2026-present Agilebot Robotics Co., Ltd. 277 1283

}

4.13 Robot Subscription & Publish Interface | Agilebot Robot SDK

// [EN] Disconnect
subPub.Disconnect().Wait();

Console.WritelLine(
"WebSocket Wi %1 /WebSocket Disconnected Successfully"

);

Console.WritelLine(

"8 i) 7 RO SR 52 il /Polling Receiving Test Completed"
)s
return StatusCode.OK;

catch (Exception ex)

{

e}r"

}

Console.WritelLine(

$" PATIE R K E % /Exception occurred during execution: {ex.Messag

IE

return StatusCode.OtherReason;

finally

{

[/ [ZH] KPAER

// [EN] Close the connection

StatusCode disconnectCode =
controller.Disconnect();

if (disconnectCode != StatusCode.OK)

{
Console.WriteLine(

disconnectCode.GetDescription()

)3
if (code == StatusCode.OK)

code = disconnectCode;

Copyright © 2026-present Agilebot Robotics Co., Ltd.

2781283

Agilebot C# SDK Update Notes | Agilebot Robot SDK

Agilebot C# SDK Update Notes

2.0.3.* Update (2025/12/17)

1. Arm constructor now includes teachPanellP parameter.
2. Removed System.Text.Json dependency.

3. Added synchronous connection interface ConnectSync.

2.0.2.* Update (2025/12/12)

1. Fixed the incorrect read/write order of data in the PR register struct.

2.0.1.* Update (2025/10/21)

1. Fixed the stuttering issue during continuous jogging.

2. Fixed a build-time error where the proxy executable might fail to copy.

Update 2.0.0.* (2025-09-10)

1. Refactored the underlying request pattern and added a local controller proxy service.
2. Introduced subscription functionality.
3. Reorganized the BasScript class structure.

4. Full support for both .NET Framework and .NET (Core/5+/6+).

Version 1.0.1.0 Update (July 7, 2025)

Copyright © 2026-present Agilebot Robotics Co., Ltd. 279/ 283

Agilebot C# SDK Update Notes | Agilebot Robot SDK

1. Added the old register interface class RegistersOld to be compatible with robot versions prior
to 7.6.0.0

2. Added the Estop emergency braking interface

3. Fixed the example programs in the documentation

Version 1.0.0.0 Update (May 30, 2025)

1. Implemented using RPC method.

2. Synchronized all interface definitions with the Python version.

Copyright © 2026-present Agilebot Robotics Co., Ltd. 280/ 283

Help | Agilebot Robot SDK

Help

Copyright © 2026-present Agilebot Robotics Co., Ltd. 281 /283

Al Coding Support | Agilebot Robot SDK

Al Coding Support

This document describes how to use Al assistance tools (such as CodeBuddy, Codex, Cursor, etc.)

to quickly develop robot plugins.

Preparation
Before using Al coding, you need to prepare the reference documentation:

e SDK Documentation: https://dev.sh-agilebot.com/docs/sdk/knowledge/docs.txt

Tip: If your Al agent cannot read URLs well, download the txt document above to your local

project directory and reference the local file path in your prompt.

Example Prompt

Here is a complete example for creating a Python program that reads robot status:

Read the following documentation and write a Python program that reads the robot's

current position, coordinate system number, servo status, and other information.
Reference materials:

SDK Documentation: https://dev.sh-agilebot.com/docs/sdk/knowledge/docs.txt

If you rely on local documentation, you can modify it to:

Read the following documentation and write a Python program that reads the robot's

current position, coordinate system number, servo status, and other information.

Reference materials:

SDK Documentation: ./docs/sdk_docs.txt

Copyright © 2026-present Agilebot Robotics Co., Ltd.

2821283

https://dev.sh-agilebot.com/docs/sdk/knowledge/docs.txt

Al Coding Support | Agilebot Robot SDK

Usage Tips

1. Clear Requirements: Clearly describe the functionality you want to implement
2. Provide Context: Reference relevant documentation and examples

3. Stepwise Implementation: Complex features can be generated step by step with Al

Notes

1. Code generated by Al needs to be verified and tested
2. Ensure code complies with project coding standards

3. Code involving robot control must undergo security review

Copyright © 2026-present Agilebot Robotics Co., Ltd. 283 /283

	Agilebot Robot SDKAgilebot Robot SDK Manual
	Python SDK
	C# SDK

	C# SDK ​
	Prologue ​
	Version History ​
	Update Notes ​

	Robot Version Compatibility ​
	1 Introduction and Deployment ​
	1.1 Environment Requirements ​
	1.2 Installation ​
	IDE Setup ​
	Get the SDK and Create a Project ​
	Proxy Files and Troubleshooting ​
	Networking and Debugging Requirements ​

	1.3 Example Program Usage ​
	Run the Example ​
	Proxy Types ​

	2 Glossary ​
	3 Data Structures ​
	3.1 StatusCode ​
	Description ​
	Import ​
	Fields ​

	3.2 RobotState ​
	Description ​
	Import ​
	Fields ​

	3.3 CtrlState ​
	Description ​
	Import ​
	Fields ​

	3.4 ServoState ​
	Description ​
	Import ​
	Fields ​

	3.5 TransformStatusEnum ​
	Description ​
	Import ​
	Fields ​

	3.6 PayloadInfo ​
	Description ​
	Import ​
	Properties ​
	Example ​
	3.6.1 MassCenter ​
	Description ​
	Import ​
	Properties ​

	3.6.2 InertiaMoment ​
	Description ​
	Import ​
	Properties ​

	3.7 TransformState ​
	Description ​
	Import ​
	Fields ​

	3.8 TCSType ​
	Description ​
	Import ​
	Fields ​

	3.9 MotionPose ​
	Description ​
	Import ​
	Properties ​
	Example ​

	3.10 BaseCartData ​
	Description ​
	Import ​
	Properties ​
	Example ​
	3.10.1 Position ​
	Description ​
	Import ​
	Properties ​
	Example ​

	3.10.2 Posture ​
	Description ​
	Import ​
	Properties ​
	Example ​

	3.11 Joint ​
	Description ​
	Import ​
	Properties ​
	Example ​
	Notes ​

	3.12 PoseType ​
	Description ​
	Import ​
	Enum Values ​

	3.13 DHparam ​
	Description ​
	Import ​
	Properties ​
	Constructor ​
	Notes ​

	3.14 CartStatus ​
	Description ​
	Import ​
	Properties ​

	3.15 JointStatus ​
	Description ​
	Import ​
	Properties ​

	3.16 DragStatus ​
	Description ​
	Import ​
	Properties ​
	Constructor ​
	Example ​

	3.17 ProgramPose ​
	Description ​
	Import ​
	Properties ​
	Constructor ​
	Example ​
	3.17.1 ProgramPoseData ​
	Description ​
	Import ​
	Properties ​

	3.17.2 ProgramCartData ​
	Description ​
	Import ​
	Properties ​

	3.18 FileType ​
	Description ​
	Import ​
	Enum Values ​

	3.19 SignalType ​
	Description ​
	Import ​
	Enum Values ​

	3.20 PoseRegister ​
	Description ​
	Import ​
	Properties ​
	Constructor ​
	Example ​
	3.20.1 PoseRegisterData ​
	Description ​
	Import ​
	Properties ​

	3.22 Coordinate ​
	Description ​
	Import ​
	Properties ​
	Example ​
	3.22.1 CoordinateType ​
	Description ​

	Import ​
	Enum Values ​

	3.22.2 CoordSummary ​
	Description ​

	Import ​
	Properties ​
	Example ​

	4 Methods and Examples ​
	4.1 Basic Operations of the Robot ​
	4.1.1 Connecting to the Robot ​
	4.1.2 Checking the Connection with the Robot Arm ​
	4.1.3 Disconnecting from the Robot ​
	4.1.4 Getting the Current Robot Model ​
	4.1.5 Getting the Robot's Operating State ​
	4.1.6 Getting the Current Controller Operating State ​
	4.1.7 Getting the Current Servo State ​
	4.1.8 Getting the Robot Controller Version ​
	4.1.9 Setting the Robot's LED Indicator Light ​
	4.1.10 Robot Servo On ​
	4.1.11 Robot Servo Off ​
	4.1.12 Resetting the Robot Servo ​
	4.1.13 Emergency Stop ​

	4.2 Robot Motion Control and Status ​
	4.2.1 Getting Robot Parameters ​
	4.2.1.1 Getting OVC Overall Velocity Coefficient ​
	4.2.1.2 Getting OAC Overall Acceleration Coefficient ​
	4.2.1.3 Getting the Current TF ​
	4.2.1.4 Getting the Current UF ​
	4.2.1.5 Getting the Current TCS Teaching Coordinate System ​

	4.2.2 Setting Robot Parameters ​
	4.2.2.1 Setting OVC Overall Velocity Coefficient ​
	4.2.2.2 Setting OAC Overall Acceleration Coefficient ​
	4.2.2.3 Setting the Current TF Tool Coordinate System Index ​
	4.2.2.4 Setting the Current UF User Coordinate System Index ​
	4.2.2.5 Setting the Current TCS Teaching Coordinate System ​

	4.2.3 Converting Cartesian Position to Joint Values ​
	4.2.4 Converting Joint Values to Cartesian Position ​
	4.2.5 Moving the Robot End Effector to a Specified Position ​
	4.2.6 Moving the Robot End Effector Along a Straight Line to a Specified Position ​
	4.2.7 Moving the Robot End Effector Along an Arc to a Specified Position ​
	4.2.8 Getting the Current Pose of the Robot ​
	4.2.9 Getting the Robot's DH Parameters ​
	4.2.10 Setting the Robot's DH Parameters ​
	4.2.11 Getting the Robot Axis Lock Status ​
	4.2.12 Setting the Robot Axis Lock Status ​
	4.2.13 Enabling Drag Teaching for the Robot ​
	4.2.14 Entering Real-Time Position Control Mode ​
	4.2.15 Exiting Real-Time Position Control Mode ​
	4.2.16 Setting Subscription Parameters ​
	Data Push Description ​

	4.2.17 Getting the Robot's Soft Limits ​
	4.2.18 Specifying UDP Position Control Parameters ​
	4.2.19 Payload-Related Interfaces ​
	4.2.19.1 Getting the Current Active Payload ​
	4.2.19.2 Getting the Corresponding Payload ​
	4.2.19.3 Activating the Corresponding Payload ​
	4.2.19.4 Getting All Payload Information ​
	4.2.19.5 Adding a Payload ​
	4.2.19.6 Deleting a Specified Payload ​
	4.2.19.7 Updating a Specified Payload ​
	4.2.19.8 Checking if Axis 3 is Horizontal ​
	4.2.19.9 Getting the Payload Identification State ​
	4.2.19.10 Starting Payload Identification ​
	4.2.19.11 Getting the Payload Identification Result ​
	4.2.19.12 Starting Interference Check for Payload Identification ​
	4.2.19.13 Entering Payload Identification State ​
	4.2.19.14 Exiting Payload Identification State ​
	4.2.19.15 Full Payload Identification Process ​

	4.3 Robot Program Execution Class ​
	4.3.1 Executing a Specified Program ​
	4.3.2 Stopping the Currently Executing Program ​
	4.3.3 Returning Details of All Running Programs ​
	4.3.4 Pausing Program Execution ​
	4.3.5 Resuming Program Execution ​
	4.3.6 Executing a BAS Script Program ​

	4.4 Program Information Read/Write Operations ​
	4.4.1 Reading the Value of a Specified Pose in a Program ​
	4.4.2 Wirting the Value of a Specified Pose in a Program ​
	4.4.3 Adding a Pose to a Specified Program ​
	4.4.4 Deleting a Specified Pose from a Program ​
	4.4.5 Retrieving All Poses from a Specified Program ​
	4.4.6 Converting Pose Types in Robot Programs ​

	4.5 IO Signals ​
	4.5.1 Reading the Value of a Specified Type and Port IO ​
	4.5.2 Writing the Value of a Specified Type and Port IO ​
	4.5.3 Batch Write DO Signals ​
	4.5.4 Batch Read DO Signals ​

	4.6 Register Information ​
	4.6.1 R Numeric Register Operations ​
	4.6.1.1 Reading the Value of an R Register ​
	4.6.1.2 Writing the Value of an R Register ​
	4.6.1.3 Deleting an R Register ​

	4.6.2 MR Motion Register Operations ​
	4.6.2.1 Reading the Value of an MR Register ​
	4.6.2.2 Writing the Value of an MR Register ​
	4.6.2.3 Deleting an MR Register ​

	4.6.3 SR String Register Operations ​
	4.6.3.1 Reading the Value of an SR Register ​
	4.6.3.2 Writing the Value of an SR Register ​
	4.6.3.3 Deleting an SR Register ​

	4.6.4 PR Pose Register Operations ​
	4.6.4.1 Reading the Value of a PR Register ​
	4.6.4.2 Writing the Value of a PR Register ​
	4.6.4.3 Deleting a PR Register ​

	4.6.5 Modbus Registers (MH Holding Registers, MI Input Registers) ​
	4.6.5.1 Reading the Value of an MH Register ​
	4.6.5.2 Reading the Value of an MI Register ​
	4.6.5.3 Writing the Value of an MH Register ​
	4.6.5.4 Writing the Value of an MI Register ​

	4.7 Trajectory Control ​
	4.7.1 Setting the Offline Trajectory File ​
	4.7.2 Moving the Robot to the Start Point of the Offline Trajectory ​
	4.7.3 Starting Execution of the Offline Trajectory File ​
	4.7.4 Convert CSV Trajectory File to Trajectory Format ​
	4.7.5 Query Trajectory Conversion Status ​

	4.8 Alarm Information ​
	4.8.1 Getting the Most Severe Alarm ​
	4.8.2 Getting All Active Alarms ​
	4.8.3 Resetting Alarms ​

	4.9 File Service Class ​
	4.9.1 Uploading a Local File to the Robot ​
	4.9.2 Downloading a Robot File to a Local Machine ​
	4.9.3 Deleting a File from the Robot ​
	4.9.4 Search Files by Filename Pattern ​

	4.10 BasScript Script Program Class ​
	4.10.1 Motion to Point Instruction ​
	4.10.2 Linear Motion to Point Instruction ​
	4.10.3 Arc Motion to Point Instruction ​
	4.10.4 Jump Point-to-Point Motion Instruction ​
	4.10.5 Jump3 Three-Point Jump Instruction ​
	4.10.6 Jump3CP Three-Point Jump CP Instruction ​
	4.10.7 Extra Parameter Class ​
	4.10.8 AssignValue Assignment Instruction ​
	4.10.9 AssignValue Assignment Instruction ​
	4.10.10 IF Conditional Instruction ​
	4.10.11 ELSE_IF Conditional Branch Instruction ​
	4.10.12 ELSE Instruction ​
	4.10.13 END_IF End Conditional Instruction ​
	4.10.14 WHILE Loop Instruction ​
	4.10.15 END_WHILE End Loop Instruction ​
	4.10.16 SWITCH Multi-Branch Selection Instruction ​
	4.10.17 CASE Branch Instruction ​
	4.10.18 DEFAULT Branch Instruction ​
	4.10.19 END_SWITCH End Multi-Branch Selection Instruction ​
	4.10.20 SKIP_CONDITION Skip Condition Instruction ​
	4.10.21 WAIT Wait Condition Instruction ​
	4.10.22 WAIT_TIME Wait Time Instruction ​
	4.10.23 GOTO Jump Instruction ​
	4.10.24 LABEL Instruction ​
	4.10.25 BREAK Break Out of Loop Instruction ​
	4.10.26 CONTINUE Skip Loop Instruction ​
	4.10.27 PAUSE Instruction ​
	4.10.28 ABORT Instruction ​
	4.10.29 CALL Synchronous Program Call Instruction ​
	4.10.30 RUN Asynchronous Program Call Instruction ​
	4.10.31 LOAD Load Program Instruction ​
	4.10.32 UNLOAD Unload Program Instruction ​
	4.10.33 EXEC Execute Program Instruction ​
	4.10.34 OPEN Open Socket Connection Instruction ​
	4.10.35 CLOSE Close Socket Connection Instruction ​
	4.10.36 CONNECT Socket Connection Instruction ​
	4.10.37 SEND Send Socket Data Instruction ​
	4.10.38 RECV Receive Socket Data Instruction ​
	4.10.39 READ_MH Read Modbus Holding Register Instruction ​
	4.10.40 READ_MI Read Modbus Input Register Instruction ​
	4.10.41 WRITE_MH Write Modbus Holding Register Instruction ​
	4.10.42 FIND Find Vision Program Instruction ​
	4.10.43 GET_OFFSET Get Vision Program Offset Instruction ​
	4.10.44 GET_QUANTITY Get Vision Program Result Instruction ​
	4.10.45 SetParam Set Parameter Instruction ​

	4.11 Coordinate System Class ​
	4.11.1 Getting Information of a Specified Coordinate System ​
	4.11.2 Updating Coordinate System Information ​
	4.11.3 Adding Coordinate System Information ​
	4.11.4 Deleting Information of a Specified Coordinate System ​
	4.11.5 Getting a List of Coordinate System Information ​

	4.12 Robot Jogging Motion ​
	4.12.1 Robot Jogging Motion ​
	4.12.2 Multi-Axis Simultaneous Continuous Motion ​
	4.12.3 Stop Robot Jogging Motion ​

	4.13 Robot Subscription & Publish Interface ​
	4.13.1 Connect to WebSocket Server ​
	4.13.2 Disconnect from WebSocket Server ​
	4.13.3 Subscribe to Robot Status ​
	4.13.4 Subscribe to Registers ​
	4.13.5 Subscribe to I/O Signals ​
	4.13.6 Start Receiving Messages ​
	4.13.7 Receive Next Text Message ​

	Agilebot C# SDK Update Notes ​
	2.0.3.* Update (2025/12/17) ​
	2.0.2.* Update (2025/12/12) ​
	2.0.1.* Update (2025/10/21) ​
	Update 2.0.0.* (2025-09-10) ​
	Version 1.0.1.0 Update (July 7, 2025) ​
	Version 1.0.0.0 Update (May 30, 2025) ​

	Help ​
	AI Coding Support ​
	Preparation ​
	Example Prompt ​
	Usage Tips ​
	Notes ​

