
Python SDK

High-performance robot control
development kit based on Python,
featuring elegant and concise API design
to help you rapidly build intelligent
robotics applications.

Learn More

C# SDK

Enterprise-grade robot control solution
for the .NET ecosystem, providing type-
safe strongly-typed APIs for seamless
integration into industrial automation
systems.

Learn More

Agilebot Robot SDK Manual

Copyright © 2026-present Agilebot Robotics Co., Ltd.

Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 1 / 283

C# SDK

C# SDK | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 2 / 283

Prologue

Prologue | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 3 / 283

Document Version SDK Version Number Version Date

V3.2 2.0.3.* 2025.12.17

Version History

Update Notes

Version History | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 4 / 283

The SDK supports Agilebot Scara, Puma, and collaborative robot series. It must be used with
devices that have the robot software installed and is compatible with the robot software versions.
Some functions may return different results due to version differences.

When the SDK connects to the robotic arm, it will check the version of the robotic arm motion
control software. If the version is lower than the minimum requirement, the connection will fail. If
it is lower than the recommended version, a prompt indicating that the version is too low will
appear. Please update the robot software version in a timely manner.

Some interfaces of the SDK only support the corresponding version of the controller. Please
check the compatibility of specific interfaces.

SDK Version Compatible Robot Software Versions Support Status

0.1.1.X Copper v7.5.X.X, Bronze v7.4.X.X Discontinued

0.1.2.X Copper v7.5.X.X, Bronze v7.4.X.X Discontinued

0.2.0.X Copper v7.5.X.X, Bronze v7.4.X.X Discontinued

1.0.0.X Copper v7.6.X.X, Bronze v7.5.X.X Supported

2.0.X.X Copper v7.7.X.X, Bronze v7.7.X.X Supported

Robot Version Compatibility

Robot Version Compatibility | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 5 / 283

1 Introduction and Deployment

1 Introduction and Deployment | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 6 / 283

System:

Windows 10 or later

x86_64 architecture

.NET Version

6.0 or higher

.NET Framework Version

4.7 or higher

1.1 Environment Requirements

1.1 Environment Requirements | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 7 / 283

This section walks through IDE preparation, SDK installation, and the most common runtime
caveats so you can start experimenting with the Agilebot SDK right away.

1. Visual Studio is the recommended IDE for C# development. Download it from Download
Visual Studio Tools - Free Install for Windows, Mac, Linux.

2. After installation, launch Visual Studio and finish the initial setup (sign in, install required
workloads, etc.).

1. Create a new C# Console App and choose .NET 6.0 or later as the target framework.

1.2 Installation

IDE Setup

Get the SDK and Create a Project

1.2 Installation | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 8 / 283

https://visualstudio.microsoft.com/downloads/
https://visualstudio.microsoft.com/downloads/

2. Open the project properties, set the target OS to Windows, and pick version 7.0 or higher to
leverage the latest WinApp SDK features.

1.2 Installation | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 9 / 283

1.2 Installation | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 10 / 283

3. Navigate to Tools > NuGet Package Manager > Package Manager Settings , then add the directory
containing the SDK package as a new package source.

1.2 Installation | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 11 / 283

1.2 Installation | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 12 / 283

1.2 Installation | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 13 / 283

4. Switch the NuGet package source to the newly added entry and install the Agilebot.SDK

package.

1.2 Installation | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 14 / 283

After installing the SDK, the project automatically gains a Tools folder containing
controller_proxy_service_windows_amd64.exe , which is required when using the local controller

proxy. If the executable is missing, copy it manually into both the project folder and the build
output directory.

If the proxy service stays alive because the program exited unexpectedly, open Windows Task
Manager, locate controller_proxy_service_windows_amd64, and end the process.

While the proxy service is running, do not move the directory where the proxy service is
located to another location.

1. Before running your code, make sure the host PC is connected to the robot network or shares
the same LAN as the robot.

Proxy Files and Troubleshooting

Networking and Debugging Requirements

1.2 Installation | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 15 / 283

2. Keep the network stable during debugging to prevent the proxy service from dropping
unexpectedly.

1.2 Installation | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 16 / 283

This chapter walks through the C#_example project that ships with the SDK. By switching the

startup item you can quickly try out each major SDK class.

1. Open and run C#_example ; a console window appears automatically.

2. Enter the robot IP address when prompted.

3. Choose where to host the proxy service (robot controller or local PC).

4. Click Start to load the selected example.

1.3 Example Program Usage

Run the Example

1.3 Example Program Usage | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 17 / 283

Robot Internal Proxy: Uses the proxy built into the robot controller. Recommended for
controller firmware v7.7.0.0 or newer.

Local Controller Proxy: Uses the lightweight proxy shipped with the SDK and runs on the
host PC. This is the only option when the controller firmware is below v7.7.0.0.

For Airbot robots only the Robot Internal Proxy is supported; the local proxy cannot reach
Airbot controllers.

Proxy Types

1.3 Example Program Usage | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 18 / 283

Term Description

teach pendant The pendant attached to the robot, used for teaching and controlling the robot

SDK Software Development Kit, used for programming and controlling the robot

robot network The network connection between the robot and the external computer

controller
The control unit of the robot, responsible for executing motion commands,
processing sensor data, and managing robot status

robotic arm The main moving part of the robot, consisting of multiple joints and links

servo system
The motor drive system that controls robot joint motion, providing precise position
and speed control

teaching
The process of recording robot motion trajectories and actions through manual
operation of the robot or teach pendant

joint
The movable component connecting various links in the robot arm, each joint
corresponding to one degree of freedom

Cartesian
coordinates

A three-dimensional coordinate system based on three mutually perpendicular X, Y,
Z axes, used to describe the robot's position and orientation in space

pose
The combination of the robot's position and orientation in space, including
position coordinates and rotation angles

trajectory
The path of the robot's end effector moving in space, usually composed of a series
of pose points

payload
The weight and objects carried by the robot's end effector, affecting the robot's
motion performance and accuracy

coordinate
system

A reference system used to describe robot position and orientation, including base
coordinate system, tool coordinate system, user coordinate system, etc.

OVC
Overall Velocity Control, used to set the overall motion speed multiplier of the
robot

OAC Overall Acceleration Control, used to set the overall acceleration multiplier of the

2 Glossary

2 Glossary | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 19 / 283

Term Description

robot

TF Tool Frame, a coordinate system with the robot's end tool as the origin

UF
User Frame, a user-defined coordinate system for convenient programming and
positioning

TCS Teach Coordinate System, a coordinate reference system used during teaching

DH parameters
Denavit-Hartenberg parameters, standard parameters used to describe the
geometric relationships of robot links

PR register Pose Register, a register used to store robot pose information

MR register Motion Register, a register used to store motion-related parameters

SR register String Register, a register used to store string information

R register Real Register, a register used to store numerical information

MH register Modbus Holding Register, a holding register for Modbus communication

MI register Modbus Input Register, an input register for Modbus communication

BAS
Basic Script, a high-level programming language used to write robot control
programs

Scara Selective Compliance Assembly Robot Arm, a type of four-axis industrial robot

collaborative
robot

A robot capable of safe collaboration with humans, usually equipped with force
sensing and collision detection capabilities

industrial robot
A robot used for industrial automation production, usually with high precision, high
speed, and high load capacity

Copper The codename for Agilebot's collaborative robot product line

Bronze The codename for Agilebot's industrial robot product line

2 Glossary | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 20 / 283

Status codes returned by the interface.

Name
Enum
Value

Description

OK 0 Execution successful

INCOMPATIBLE_VERSION -1 Incompatible version

TIMEOUT -3 Connection timeout

INTERFACE_NOT_IMPLEMENTED -4 Interface not implemented

INDEX_OUT_OF_RANGE -5 Index out of range

UNSUPPORTED_FILETYPE -6 Unsupported file type

UNSUPPORTED_PARAMETER -7 Unsupported robot parameter

UNSUPPORTED_SIGNALTYPE -8 Unsupported IO signal type

PROGRAM_NOT_FOUND -9 Program not found

PROGRAM_POSE_NOT_FOUND -10 Program pose information not found

3 Data Structures

3.1 StatusCode

Description

Import

Fields

using Agilebot.IR;
c#

3 Data Structures | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 21 / 283

Name
Enum
Value

Description

WRITE_PROGRAM_FAILED -11 Failed to update program pose information

GET_ALARM_CODE_FAILED -12 Failed to access alarm service to get alarm code

WRONG_POSITION_INFO -13 Controller returns incorrect position information

UNSUPPORTED_TRA_TYPE -14 Unsupported motion type

FILE_NOT_FOUND -15 File or folder not found

FILE_ALREADY_EXIST -16 File already exists

GET_ALARM_DESC_FAILED -17 Failed to get alarm information based on alarm code

RESET_ALARM_ERRORS_FAILED -18 Failed to reset alarm information

GET_ALL_ALARMS_FAILED -19 Failed to get all alarm information

WRONG_DATA_FORMAT -20 Incorrect data format received

CONNECT_FAILED -21
Initialization connection failed, please check IP
address or control cabinet service

POSE_INDEX_DUPLICATED -23 Pose index duplicated

CONTROLLER_ERROR -254 Controller error, please contact the developer

OTHER_REASON -255 Other reasons

Robot operation status.

3.2 RobotState

Description

Import

3 Data Structures | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 22 / 283

Name Enum Value Description

WRONG_DATA -1 Unknown state

ROBOT_IDLE 0 Robot idle

ROBOT_RUNNING 1 Robot running

ROBOT_TEACHING 2 Robot teaching

ROBOT_IDLE_TO_RUNNING 101 Robot intermediate state, idle to running

ROBOT_IDLE_TO_TEACHING 102 Robot intermediate state, idle to teaching

ROBOT_RUNNING_TO_IDLE 103 Robot intermediate state, running to idle

ROBOT_TEACHING_TO_IDLE 104 Robot intermediate state, teaching to idle

Controller operation status.

Fields

3.3 CtrlState

Description

Import

Fields

using Agilebot.IR.Types;

using Agilebot.IR.Types;

c#

c#

3 Data Structures | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 23 / 283

Name
Enum
Value

Description

WRONG_DATA -1 Unknown controller state

CTRL_INIT 0 Controller initializing

CTRL_ENGAGED 1 Controller enabled

CTRL_ESTOP 2 Controller emergency stop

CTRL_TERMINATED 3 Controller terminated

CTRL_ANY_TO_ESTOP 101 Controller intermediate state, any to emergency stop

CTRL_ESTOP_TO_ENGAGED 102
Controller intermediate state, emergency stop to
enabled

CTRL_ESTOP_TO_TERMINATED 103
Controller intermediate state, emergency stop to
terminated

Servo controller status.

Name Enum Value Description

WRONG_DATA -1 Unknown servo controller state

SERVO_IDLE 1 Servo controller idle

3.4 ServoState

Description

Import

Fields

using Agilebot.IR.Types;
c#

3 Data Structures | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 24 / 283

Name Enum Value Description

SERVO_RUNNING 2 Servo controller running

SERVO_DISABLE 3 Servo controller disabled

SERVO_WAIT_READY 4 Servo controller waiting for ready

SERVO_WAIT_DOWN 5 Servo controller waiting for shutdown

SERVO_INIT 10 Servo controller initializing

Enum for offline trajectory file conversion status.

Name Enum Value Description

TRANSFORM_START 0 Conversion task started

TRANSFORM_RUNNING 1 Conversion task in progress

TRANSFORM_SUCCESS 2 Conversion task completed successfully

TRANSFORM_FAILED 3 Conversion task failed

TRANSFORM_NOT_FOUND 4 Conversion task not found

TRANSFORM_UNKNOWN -1 Unknown conversion task status

3.5 TransformStatusEnum

Description

Import

Fields

using Agilebot.IR.Types;
c#

3 Data Structures | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 25 / 283

The PayloadInfo class is used to store the robot's payload information, including payload ID,

weight, center of mass, and moment of inertia. This information is crucial for kinematic and
dynamic analysis of the robot under load conditions, especially for path planning and torque
calculation.

Property Type Description

Id uint
Payload ID, used to uniquely identify different payload
configurations

Comment string
Comment, used to describe additional information about the
payload

Weight double Payload weight (unit: kilograms)

MassCenter MassCenter Payload center of mass (X, Y, Z coordinates)

InertiaMoment InertiaMoment Payload moment of inertia (LX, LY, LZ)

3.6 PayloadInfo

Description

Import

Properties

Example

using Agilebot.IR.Motion;

PayloadInfo payload = new PayloadInfo

{

 Id = 1,

 Comment = "Sample Payload",

 Weight = 5.0,

 MassCenter = new MassCenter { X = 10.0, Y = 20.0, Z = 30.0 },

c#

c#

3 Data Structures | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 26 / 283

The MassCenter class is used to represent the center of mass of the payload, containing the X, Y,

and Z coordinates. The center of mass is the geometric center of the payload in space and is
important for robot motion control and torque calculation.

Property Type Description

X double X-coordinate of the center of mass (unit: millimeters)

Y double Y-coordinate of the center of mass (unit: millimeters)

Z double Z-coordinate of the center of mass (unit: millimeters)

The InertiaMoment class is used to represent the moment of inertia of the payload, containing

the LX, LY, and LZ components. The moment of inertia represents the payload's resistance to
rotational changes and is important for robot dynamics analysis and control.

3.6.1 MassCenter

Description

Import

Properties

3.6.2 InertiaMoment

Description

Import

 InertiaMoment = new InertiaMoment { LX = 0.1, LY = 0.2, LZ = 0.3 }

};

using Agilebot.IR.Motion;

using Agilebot.IR.Motion;

c#

c#

3 Data Structures | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 27 / 283

Property Type Description

LX double X-component of the moment of inertia (unit: kilograms·millimeters²)

LY double Y-component of the moment of inertia (unit: kilograms·millimeters²)

LZ double Z-component of the moment of inertia (unit: kilograms·millimeters²)

Enum for offline trajectory file conversion status.

Enum Value Value Description

TRANSFORM_START 0 Conversion task started

TRANSFORM_RUNNING 1 Conversion task in progress

TRANSFORM_SUCCESS 2 Conversion task completed successfully

TRANSFORM_FAILED 3 Conversion task failed

TRANSFORM_NOT_FOUND 4 Conversion task not found

TRANSFORM_UNKNOWN -1 Data error, unknown status

Properties

3.7 TransformState

Description

Import

Fields

using Agilebot.IR.Types;
c#

3 Data Structures | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 28 / 283

TCS coordinate system type.

Name Enum Value Description

WRONG_TYPE -1 Incorrect type

JOINT 0 Joint space

BASE 1 Base coordinate system

WORLD 2 World coordinate system

USER 3 User coordinate system

TOOL 4 Tool coordinate system

RTCP_USER 5 RTCP user coordinate system

RTCP_TOOL 6 RTCP tool coordinate system

Describes the robot's position structure. In the coordinate data, the distance in the XYZ direction
is measured in millimeters (mm), and the angle data is measured in degrees (°). In some versions,

3.8 TCSType

Description

Import

Fields

3.9 MotionPose

Description

using Agilebot.IR.Types;
c#

3 Data Structures | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 29 / 283

the angle information is in radians; see the function list return result description for details.

Property Type Description

CartData BaseCartData Cartesian data

Joint Joint Joint data

Pt PoseType Position type, defaults to Unknown

Import

Properties

Example

using Agilebot.IR.Motion;

MotionPose motionPose = new MotionPose();

motionPose.Pt = PoseType.Cart;

motionPose.CartData.Position = new Position{

 X = 300,

 Y = 300,

 Z = 300,

 A = 0,

 B = 0,

 C = 0

};

motionPose.CartData.Posture = new Posture{

 WristFlip = 1,

 ArmUpDown = 1,

 ArmBackFront = 1,

 ArmLeftRight = 1,

 TurnCircle = new List<int>(9){0,0,0,0,0,0,0,0,0}

};

MotionPose motionPose2 = new MotionPose();

motionPose2.Pt = PoseType.Joint;

c#

c#

3 Data Structures | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 30 / 283

Describes the robot's position and posture information in the Cartesian coordinate system. The
spatial coordinates are measured in millimeters (mm), and the posture information includes wrist
and arm postures as well as the rotation counts of each axis.

Property Type Description

Position Position Robot's spatial coordinates (X, Y, Z, A, B, C)

Posture Posture Robot's posture information (wrist, arm posture, and axis rotation counts)

3.10 BaseCartData

Description

Import

Properties

Example

motionPose2.Joint = new Joint{

 J1 = 0,

 J2 = 0,

 J3 = 60,

 J4 = 60,

 J5 = 0,

 J6 = 0

};

using Agilebot.IR.Types;

BaseCartData cartData = new BaseCartData();

cartData.Position.X = 100.0;

cartData.Position.Y = 200.0;

c#

c#

3 Data Structures | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 31 / 283

Describes the robot's position and rotation angle coordinates in the Cartesian coordinate system.
The distance in the X, Y, Z directions is measured in millimeters (mm), and the angles in the A, B,
C directions are measured in degrees (°).

Property Type Description

X double
Distance in the X direction of the Cartesian coordinate system (unit:
millimeters)

Y double
Distance in the Y direction of the Cartesian coordinate system (unit:
millimeters)

Z double
Distance in the Z direction of the Cartesian coordinate system (unit:
millimeters)

A double Angle in the A direction of the Cartesian coordinate system (unit: degrees)

B double Angle in the B direction of the Cartesian coordinate system (unit: degrees)

C double Angle in the C direction of the Cartesian coordinate system (unit: degrees)

3.10.1 Position

Description

Import

Properties

Example

cartData.Position.Z = 300.0;

cartData.Posture.ArmUpDown = 1;

cartData.Posture.ArmBackFront = -1;

Console.WriteLine(cartData.ToString());

using Agilebot.IR.Types;
c#

3 Data Structures | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 32 / 283

Describes the robot's posture information, including wrist and arm postures as well as the
rotation counts of each axis. Posture information is used to define the robot's specific posture in
space.

Property Type Description

WristFlip int
Wrist flip posture. Range: ‑1, 0, 1. For a 6-axis robot J5 joint config: 1
= wrist flipped down, ‑1 = wrist flipped up.

ArmUpDown int

Arm up/down posture. Range: ‑1, 0, 1. For a 6-axis robot J3 joint
config: 1 = arm above (forward condition: joint-3 above the line from
joint-4 to joint-2 and joint-3 angle < 0), ‑1 = arm below (joint-3 angle
> 0).

ArmBackFront int

Arm front/back posture. Range: ‑1, 0, 1. For a 6-axis robot J1 joint
config: 1 = arm in front (collaborative robot facing forward, joint-2 on
the left side of joint-1), ‑1 = arm behind (joint-2 on the right side of
joint-1).

3.10.2 Posture

Description

Import

Properties

Position position = new Position();

position.X = 100.0;

position.Y = 200.0;

position.Z = 300.0;

position.A = 45.0;

position.B = 30.0;

position.C = 60.0;

Console.WriteLine(position.ToString());

using Agilebot.IR.Types;

c#

c#

3 Data Structures | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 33 / 283

Property Type Description

ArmLeftRight int
Arm left/right posture. Range: ‑1, 0, 1. For a 4-axis SCARA robot J2
joint config: 1 = SCARA arm on the right, ‑1 = SCARA arm on the left.

TurnCircle List<int>

Multi-turn counts for each axis. Range: ‑1, 0, 1. When the axis is at 0°,
turn count = 0. During linear or circular moves the controller auto-
selects the turn count closest to the start pose, so the final value may
differ from the taught posture. For axes 1, 4, 5, 6: ≥ 180° → value ≥ 1;
‑179.99° ~ 179.99° → 0; ≤ ‑180° → value ≤ ‑1.

Describes the angle data of each robot joint. Each joint angle value is used to define the robot's
specific position in joint space. The angle unit is typically degrees (°), but the specific unit should
be confirmed based on the actual robot system.

Example

3.11 Joint

Description

Import

Properties

Posture posture = new Posture();

posture.TurnCircle = new List<int>(9){0,0,0,0,0,0,0,0,0};

posture.WristFlip = 1;

posture.ArmUpDown = 1;

posture.ArmBackFront = -1;

posture.ArmLeftRight = 1;

Console.WriteLine(posture.ToString());

using Agilebot.IR.Types;

c#

c#

3 Data Structures | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 34 / 283

Property Type Description

J1 double Angle of the robot's first joint

J2 double Angle of the robot's second joint

J3 double Angle of the robot's third joint

J4 double Angle of the robot's fourth joint

J5 double Angle of the robot's fifth joint

J6 double Angle of the robot's sixth joint

J7 double Angle of the robot's seventh joint

J8 double Angle of the robot's eighth joint

J9 double Angle of the robot's ninth joint

The unit of joint angles is typically degrees (°), but some robot systems may use radians (rad).
Please confirm the unit based on the actual robot system documentation.

The range of joint angles is usually limited by the robot hardware. Exceeding the range may
cause errors or damage the equipment.

Example

Notes

Joint joint = new Joint();

joint.J1 = 45.0;

joint.J2 = 30.0;

joint.J3 = 60.0;

joint.J4 = 90.0;

joint.J5 = 120.0;

joint.J6 = 135.0;

joint.J7 = 150.0;

joint.J8 = 180.0;

joint.J9 = 225.0;

Console.WriteLine(joint.ToString());

c#

3 Data Structures | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 35 / 283

Defines the type of robot pose data, used to distinguish whether the data is joint angle data,
Cartesian space coordinates, or unknown type. This enum is used to identify the format of robot
pose data so that different types of data can be correctly processed in the program.

Enum Value Description

Unknown Unknown type, indicating the pose data type is not defined

Joint Joint angle data type, indicating the data is joint angles

Cart Cartesian space coordinate data type, indicating the data is Cartesian coordinates

The DHparam class is used to describe the robot link parameters based on the Denavit-

Hartenberg parameters (D-H parameters). These parameters are used to define the geometric
relationships between robot joints and are the basis for robot kinematics and dynamics analysis.

3.12 PoseType

Description

Import

Enum Values

3.13 DHparam

Description

Import

using Agilebot.IR.Types;
c#

3 Data Structures | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 36 / 283

https://en.wikipedia.org/wiki/Denavit%E2%80%93Hartenberg_parameters
https://en.wikipedia.org/wiki/Denavit%E2%80%93Hartenberg_parameters

Property Type Description

id uint Unique identifier for the link, used to distinguish different links

a double
Link length, representing the axial distance between adjacent joints (unit:
millimeters)

alpha double
Link twist angle, representing the angle between adjacent joint axes (unit:
degrees or radians)

d double
Joint distance, representing the distance along the current joint axis to the
next joint (unit: millimeters)

offset double
Joint angle offset, representing the initial angle offset of the joint (unit:
degrees or radians)

Unit consistency: The units of a and d should be consistent (typically millimeters), and the
units of alpha and offset should also be consistent (typically degrees or radians).

Angle unit: In some robot systems, the angle unit may be radians instead of degrees. Please
confirm and unify the units based on actual requirements.

D-H parameter definition: The definition of D-H parameters depends on the specific robot
model and coordinate system conventions. When using the DHparam class, ensure that the
parameter definitions are consistent with the robot's actual geometric structure.

Properties

Constructor

Notes

using Agilebot.IR.Types;

public DHparam(uint id, double d, double a, double alpha, double offset)

c#

c#

3 Data Structures | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 37 / 283

The CartStatus class is used to represent the status of each axis in the Cartesian coordinate

system. The status of each axis is represented by a boolean value, with true indicating the axis is

available and false indicating it is not. This status class is commonly used in robot motion

control to determine whether a particular axis can function properly.

Property Type Description

X bool Status of the X direction, defaults to true (available)

Y bool Status of the Y direction, defaults to true (available)

Z bool Status of the Z direction, defaults to true (available)

A bool Status of the A direction, defaults to true (available)

B bool Status of the B direction, defaults to true (available)

C bool Status of the C direction, defaults to true (available)

3.14 CartStatus

Description

Import

Properties

3.15 JointStatus

Description

using Agilebot.IR.Types;
c#

3 Data Structures | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 38 / 283

The JointStatus class is used to represent the status of each robot joint. The status of each joint

is represented by a boolean value, with true indicating the joint is available and false indicating

it is not. This status class is commonly used in robot motion control to determine whether a
particular joint can function properly.

Property Type Description

J1 bool Status of Joint 1, defaults to true (available)

J2 bool Status of Joint 2, defaults to true (available)

J3 bool Status of Joint 3, defaults to true (available)

J4 bool Status of Joint 4, defaults to true (available)

J5 bool Status of Joint 5, defaults to true (available)

J6 bool Status of Joint 6, defaults to true (available)

J7 bool Status of Joint 7, defaults to true (available)

J8 bool Status of Joint 8, defaults to true (available)

J9 bool Status of Joint 9, defaults to true (available)

The DragStatus class is used to represent the drag status of the robot arm, including the status

of the Cartesian coordinate system and the joints. Additionally, it includes a flag

Import

Properties

3.16 DragStatus

Description

using Agilebot.IR.Types;
c#

3 Data Structures | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 39 / 283

IsContinuousDrag to indicate whether the robot is in continuous drag mode. This status class is

commonly used in robot drag control to determine the current drag mode and the status of each
axis/joint.

Property Type Description

CartStatus CartStatus Status of the Cartesian coordinate system

JointStatus JointStatus Status of the joints

IsContinuousDrag bool Whether the robot is in continuous drag mode, defaults to false

Initializes CartStatus and JointStatus , and sets IsContinuousDrag to false .

Import

Properties

Constructor

Example

using Agilebot.IR.Types;

public DragStatus()

DragStatus dragStatus = new DragStatus();

dragStatus.CartStatus.X = false; // X-axis unavailable

dragStatus.JointStatus.J3 = false; // Joint 3 unavailable

dragStatus.IsContinuousDrag = true; // Set to continuous drag mode

Console.WriteLine($"X-axis status: {dragStatus.CartStatus.X}, Joint 3 status: {drag

Status.JointStatus.J3}, Is continuous drag: {dragStatus.IsContinuousDrag}");

c#

c#

c#

3 Data Structures | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 40 / 283

The ProgramPose class is used to represent a pose (position and orientation) in a program, which

can be joint coordinates or Cartesian coordinates. This class includes a unique identifier for the
pose, data (joint or Cartesian coordinate information), name, and comment. This class facilitates
the management and manipulation of pose information in robot programs.

Property Type Description

Id int Unique identifier for the pose

PoseData ProgramPoseData Pose data, including joint or Cartesian coordinate information

Name string Name of the pose

Comment string Comment for the pose

Initializes Id , PoseData , Name , and Comment .

3.17 ProgramPose

Description

Import

Properties

Constructor

Example

using Agilebot.IR.Types;

public ProgramPose()

ProgramPose programPose = new ProgramPose();

programPose.Id = 1; // Set the unique identifier for the pose

c#

c#

c#

3 Data Structures | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 41 / 283

The ProgramPoseData class is used to represent pose data in a program, including Cartesian

space coordinates and posture information, joint angle information, and pose type. This class
facilitates the storage and management of specific pose data.

Property Type Description

CartData ProgramCartData Cartesian data

Joint Joint Joint data

Pt PoseType Pose type, defaults to Unknown

The ProgramCartData class is used to represent the Cartesian coordinate system data in a

program. It references the BaseCartData class to include spatial coordinates and posture

information, and determines the coordinate system type through the values of Uf and Tf . Uf

represents the User Frame, and Tf represents the Tool Frame. If the values of Uf and Tf are

3.17.1 ProgramPoseData

Description

Import

Properties

3.17.2 ProgramCartData

Description

programPose.PoseData = new ProgramPoseData(); // Create pose data

programPose.Name = "Pose1"; // Set the name of the pose

programPose.Comment = "This is a sample pose"; // Set the comment for the pose

Console.WriteLine($"Pose ID: {programPose.Id}, Name: {programPose.Name}, Comment:

{programPose.Comment}");

using Agilebot.IR.Types;
c#

3 Data Structures | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 42 / 283

-1 , it indicates the use of the system's default coordinate system. This class is used in robot

programming to define and manage pose information in Cartesian space.

Property Type Description

BaseCart BaseCartData Robot's Cartesian position and posture information

Uf int User Frame, -1 indicates the use of the system's coordinate system

Tf int Tool Frame, -1 indicates the use of the system's coordinate system

The FileType enum is used to define the types of files allowed for upload. It distinguishes

between different types of robot program files based on their source and format. This enum is
used in the robot programming environment for file management, upload, and program parsing,
helping the system correctly identify and process different types of program files.

Import

Properties

3.18 FileType

Description

Import

Enum Values

using Agilebot.IR.Types;

using Agilebot.IR.Types;

c#

c#

3 Data Structures | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 43 / 283

Enum Value Description

UserProgram
Program files generated by the user through point selection, each program
includes .xml and .json files.

BlockProgram
Program files generated by the user through block programming, each program
includes .block , .xml , and .json files.

TrajectoryProgram
Offline trajectory program files, typically used for path planning in offline
programming.

The SignalType enum is used to define the types of signals supported in the robot system. It

distinguishes between various digital and analog signals based on their purpose and source. This
enum is used in the robot control system for signal configuration, signal processing, and logic
judgment, helping the system accurately identify and manage different types of signals.

Enum Value Description

DI Digital Input, used to receive external digital signals.

DO Digital Output, used to control external devices or actuators.

RI Robot Input, used to receive digital signals from the robot's wrist.

RO Robot Output, used to control actuators on the robot's wrist.

UI User Input, used to receive user-defined digital signals.

3.19 SignalType

Description

Import

Enum Values

using Agilebot.IR.Types;
c#

3 Data Structures | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 44 / 283

Enum Value Description

UO User Output, used to output user-defined digital signals.

TDI Tool Digital Input, used to receive digital signals from the tool end.

TDO Tool Digital Output, used to control actuators on the tool end.

GI Group Input, used to receive a combination of digital signals.

GO Group Output, used to output a combination of digital signals.

AI Analog Input, used to receive continuous analog signals.

AO Analog Output, used to output continuous analog signals.

TAI Tool Analog Input, used to receive analog signals from the tool end.

The PoseRegister class is used to represent a pose (position and orientation) in a PR register,

which can be joint coordinates or Cartesian coordinates. This class includes a unique identifier for
the pose, data (joint or Cartesian coordinate information), name, and comment. This class
facilitates the management and manipulation of pose information in robot programs.

Property Type Description

Id int Unique identifier for the pose

3.20 PoseRegister

Description

Import

Properties

using Agilebot.IR.Types;
c#

3 Data Structures | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 45 / 283

Property Type Description

PoseData PoseRegisterData Pose data, including joint or Cartesian coordinate information

Name string Name of the pose

Comment string Comment for the pose

Initializes Id , PoseData , Name , and Comment .

The PoseRegisterData class is used to represent pose data in a PR register, including Cartesian

space coordinates and posture information, joint angle information, and pose type. This class
facilitates the storage and management of specific pose data.

Constructor

Example

3.20.1 PoseRegisterData

Description

Import

public PoseRegister()

PoseRegister pose = new PoseRegister();

pose.Id = 1; // Set the unique identifier for the pose

pose.PoseData = new PoseRegisterData(); // Create pose data

pose.Name = "Pose1"; // Set the name of the pose

pose.Comment = "This is a sample pose"; // Set the comment for the pose

Console.WriteLine($"Pose ID: {pose.Id}, Name: {pose.Name}, Comment: {pose.Commen

t}");

using Agilebot.IR.Types;

c#

c#

c#

3 Data Structures | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 46 / 283

Property Type Description

CartData BaseCartData Cartesian data

Joint Joint Joint data

Pt PoseType Pose type, defaults to Unknown

The Coordinate class is used to represent a coordinate system in the robot system. It includes

basic information about the coordinate system, such as a unique identifier (ID), name, comment,
motion group number, and specific pose data. This class is used in robot programming and
control systems to define and manage the position and orientation of coordinate systems,
facilitating motion planning and path control in programs.

Property Type Description

Id int Unique identifier for the coordinate system

Name string
Name of the coordinate system, used to identify and describe the
coordinate system

Comment string
Comment for the coordinate system, used to further explain the purpose
or characteristics of the coordinate system

Properties

3.22 Coordinate

Description

Import

Properties

using Agilebot.IR.Types;
c#

3 Data Structures | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 47 / 283

Property Type Description

GroupId int
Motion group number to which the coordinate system belongs, used for
classification and management of coordinate systems

Data Position
Specific pose data of the coordinate system, including position and
orientation information

The CoordinateType enum is used to define the type of coordinate system. It distinguishes

between user coordinate systems and tool coordinate systems. This enum is used in robot
programming and control systems to clearly specify the purpose of the coordinate system,
helping the system correctly handle operations related to coordinate systems.

Example

3.22.1 CoordinateType

Description

Import

Enum Values

// Create a Coordinate instance

Coordinate coordinate = new Coordinate

{

 Id = 1, // Set the unique identifier

 Name = "UserCoordinate1", // Set the name

 Comment = "This is a user-defined coordinate system", // Set the comment

 GroupId = 1, // Set the motion group number

 Data = new Position { X = 100, Y = 200, Z = 300, A = 45, B = 30, C = 60 } // Se

t the pose data

};

using Agilebot.IR.Types;

c#

c#

3 Data Structures | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 48 / 283

Enum Value Description

UserCoordinate User coordinate system, used to define user-defined coordinate systems.

ToolCoordinate
Tool coordinate system, used to define the coordinate system of tools (e.g., end
effectors).

The CoordSummary class is used to represent the summary information of a coordinate system.

It includes the type, unique identifier, name, comment, and group ID of the coordinate system.
This class is used in the robot programming environment to manage and store metadata of
coordinate systems, facilitating quick access and manipulation of coordinate systems in
programs.

Property Type Description

Type CoordinateType
Type of the coordinate system, which can be a user coordinate
system or a tool coordinate system

Id int Unique identifier for the coordinate system

Name string Name of the coordinate system

Comment string
Comment for the coordinate system, used to describe its purpose or
characteristics

GroupId int
Group ID to which the coordinate system belongs, used for
classification and management of coordinate systems

3.22.2 CoordSummary

Description

Import

Properties

using Agilebot.IR.Types;
c#

3 Data Structures | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 49 / 283

Example

// Create a CoordSummary instance

CoordSummary coordSummary = new CoordSummary

{

 Type = CoordinateType.UserCoordinate, // Set to user coordinate system

 Id = 1, // Set the unique identifier

 Name = "UserCoord1", // Set the name

 Comment = "This is a user-defined coordinate system", // Set the comment

 GroupId = 0 // Set the group ID

};

c#

3 Data Structures | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 50 / 283

4 Methods and Examples

4 Methods and Examples | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 51 / 283

Method Name Arm(string controllerIP , string teachPanelIP = null, bool localProxy = true)

Description
Agilebot robot class constructor, which includes all available robot control
interfaces. The robot must be initialized and connected before other functions can
be used.

Request
Parameters

controllerIP : string Robot controller IP address
teachPanelIP : string Optional teach pendant IP; falls back to controllerIP when

omitted
localProxy : bool Whether to use local controller proxy service, default is true.

When true, launches controller proxy service locally; when false, requires proxy
service to be already installed in robot controller (requires robot software version
7.7 or later).

Return Value StatusCode: Result of function execution

Compatible robot
software version

Collaborative (Copper): v7.5.0.0+
Industrial (Bronze): v7.5.0.0+

Method Name ConnectSync()

Description
Establishes network connection with the Agilebot robot. The Arm
constructor must be called first to initialize the robot instance.

Request Parameters None

Return Value StatusCode: Result of function execution

Compatible robot
software version

Collaborative (Copper): v7.5.0.0+
Industrial (Bronze): v7.5.0.0+

4.1 Basic Operations of the Robot

4.1.1 Connecting to the Robot

4.1.2 Checking the Connection with the Robot Arm

4.1 Basic Operations of the Robot | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 52 / 283

Method Name IsConnected()

Description Checks whether the network connection with the robot is valid.

Request Parameters None

Return Value
bool: Connection status, true indicates connection is valid, false indicates
connection is invalid or not connected

Compatible robot
software version

Collaborative (Copper): v7.5.0.0+
Industrial (Bronze): v7.5.0.0+

Method Name DisconnectSync()

Description
Disconnects from the Agilebot robot and releases related
resources.

Request Parameters None

Return Value StatusCode: Result of function execution

Compatible robot software
version

Collaborative (Copper): v7.5.0.0+
Industrial (Bronze): v7.5.0.0+

Example Code

4.1.3 Disconnecting from the Robot

Arm/Connect.cs

using Agilebot.IR;

public class Connect

{

 public static StatusCode Run(

 string controllerIP,

 bool useLocalProxy = true

)

 {

 // [ZH] 初始化捷勃特机器人

cs

4.1 Basic Operations of the Robot | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 53 / 283

 // [EN] Initialize the Agilebot robot

 Arm controller = new Arm(

 controllerIP,

 useLocalProxy

);

 // [ZH] 连接到捷勃特机器人

 // [EN] Connect to the Agilebot robot

 StatusCode code = controller.ConnectSync();

 if (code != StatusCode.OK)

 {

 Console.WriteLine(

 "Connect Robot Failed: "

 + code.GetDescription()

);

 return code;

 }

 try

 {

 // [ZH] 检查连接状态

 // [EN] Check the connection status

 var state = controller.IsConnected();

 Console.WriteLine("Connected: " + state);

 }

 catch (Exception ex)

 {

 Console.WriteLine(

 $"执行过程中发生异常/Exception occurred during execution: {ex.Messag

e}"

);

 code = StatusCode.OtherReason;

 }

 finally

 {

 // [ZH] 关闭连接

 // [EN] Close the connection

 StatusCode disconnectCode =

 controller.Disconnect();

 if (disconnectCode != StatusCode.OK)

 {

 Console.WriteLine(

4.1 Basic Operations of the Robot | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 54 / 283

Method Name GetArmModelInfo()

Description
Gets the model information of the currently connected Agilebot
robot.

Request Parameters None

Return Value
string: Robot model string, e.g., "GBT-C5A"
StatusCode: Result of function execution

Compatible robot software
version

Collaborative (Copper): v7.5.0.0+
Industrial (Bronze): v7.5.0.0+

Example Code

4.1.4 Getting the Current Robot Model

Arm/GetArmModelInfo.cs

 disconnectCode.GetDescription()

);

 if (code == StatusCode.OK)

 code = disconnectCode;

 }

 }

 return code;

 }

}

using Agilebot.IR;

public class GetArmModelInfo

{

 public static StatusCode Run(

 string controllerIP,

 bool useLocalProxy = true

)

cs

4.1 Basic Operations of the Robot | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 55 / 283

 {

 // [ZH] 初始化捷勃特机器人

 // [EN] Initialize the Agilebot robot

 Arm controller = new Arm(

 controllerIP,

 useLocalProxy

);

 // [ZH] 连接到捷勃特机器人

 // [EN] Connect to the Agilebot robot

 StatusCode code = controller.ConnectSync();

 if (code != StatusCode.OK)

 {

 Console.WriteLine(

 "Connect Robot Failed: "

 + code.GetDescription()

);

 return code;

 }

 try

 {

 // [ZH] 获取机器人型号信息

 // [EN] Get the robot model information

 (string info, code) =

 controller.GetArmModelInfo();

 if (code != StatusCode.OK)

 {

 Console.WriteLine(

 "Get Robot Model Failed: "

 + code.GetDescription()

);

 }

 else

 {

 Console.WriteLine("Model: " + info);

 }

 }

 catch (Exception ex)

 {

 Console.WriteLine(

 $"执行过程中发生异常/Exception occurred during execution: {ex.Messag

4.1 Basic Operations of the Robot | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 56 / 283

Method Name GetRobotState()

Description Gets the current operating state of the Agilebot robot.

Request Parameters None

Return Value
RobotState: Robot operating state enum value
StatusCode: Result of function execution

Compatible robot software version
Collaborative (Copper): v7.5.0.0+
Industrial (Bronze): v7.5.0.0+

Example Code

4.1.5 Getting the Robot's Operating State

e}"

);

 code = StatusCode.OtherReason;

 }

 finally

 {

 // [ZH] 关闭连接

 // [EN] Close the connection

 StatusCode disconnectCode =

 controller.Disconnect();

 if (disconnectCode != StatusCode.OK)

 {

 Console.WriteLine(

 disconnectCode.GetDescription()

);

 if (code == StatusCode.OK)

 code = disconnectCode;

 }

 }

 return code;

 }

}

4.1 Basic Operations of the Robot | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 57 / 283

Arm/GetRobotState.cs

using Agilebot.IR;

using Agilebot.IR.Types;

public class GetRobotState

{

 public static StatusCode Run(

 string controllerIP,

 bool useLocalProxy = true

)

 {

 // [ZH] 初始化捷勃特机器人

 // [EN] Initialize the Agilebot robot

 Arm controller = new Arm(

 controllerIP,

 useLocalProxy

);

 // [ZH] 连接捷勃特机器人

 // [EN] Connect to the Agilebot robot

 StatusCode code = controller.ConnectSync();

 if (code != StatusCode.OK)

 {

 Console.WriteLine(

 "Connect Robot Failed: "

 + code.GetDescription()

);

 return code;

 }

 try

 {

 // [ZH] 获取机器人运行状态

 // [EN] Get the robot running state

 (RobotState state, code) =

 controller.GetRobotState();

 if (code != StatusCode.OK)

 {

 Console.WriteLine(

 "Get RobotState Failed: "

cs

4.1 Basic Operations of the Robot | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 58 / 283

4.1.6 Getting the Current Controller Operating State

 + code.GetDescription()

);

 }

 else

 {

 Console.WriteLine("RobotState: " + state);

 }

 }

 catch (Exception ex)

 {

 Console.WriteLine(

 $"执行过程中发生异常/Exception occurred during execution: {ex.Messag

e}"

);

 code = StatusCode.OtherReason;

 }

 finally

 {

 // [ZH] 关闭连接

 // [EN] Close the connection

 StatusCode disconnectCode =

 controller.Disconnect();

 if (disconnectCode != StatusCode.OK)

 {

 Console.WriteLine(

 disconnectCode.GetDescription()

);

 if (code == StatusCode.OK)

 code = disconnectCode;

 }

 }

 return code;

 }

}

4.1 Basic Operations of the Robot | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 59 / 283

Method Name GetCtrlState()

Description Gets the current operating state of the Agilebot robot controller.

Request Parameters None

Return Value
CtrlState: Controller operating state enum value
StatusCode: Result of function execution

Compatible robot software version
Collaborative (Copper): v7.5.0.0+
Industrial (Bronze): v7.5.0.0+

Example Code

Arm/GetCtrlState.cs

using Agilebot.IR;

using Agilebot.IR.Types;

public class GetCtrlState

{

 public static StatusCode Run(

 string controllerIP,

 bool useLocalProxy = true

)

 {

 // [ZH] 初始化捷勃特机器人

 // [EN] Initialize the Agilebot robot

 Arm controller = new Arm(

 controllerIP,

 useLocalProxy

);

 // [ZH] 连接捷勃特机器人

 // [EN] Connect to the Agilebot robot

 StatusCode code = controller.ConnectSync();

 if (code != StatusCode.OK)

 {

 Console.WriteLine(

 "Connect Robot Failed: "

 + code.GetDescription()

cs

4.1 Basic Operations of the Robot | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 60 / 283

);

 return code;

 }

 try

 {

 // [ZH] 获取控制器运行状态

 // [EN] Get the controller running state

 (CtrlState state, code) =

 controller.GetCtrlState();

 if (code != StatusCode.OK)

 {

 Console.WriteLine(

 "Get CtrlState Failed: "

 + code.GetDescription()

);

 }

 else

 {

 Console.WriteLine("CtrlState: " + state);

 }

 }

 catch (Exception ex)

 {

 Console.WriteLine(

 $"执行过程中发生异常/Exception occurred during execution: {ex.Messag

e}"

);

 code = StatusCode.OtherReason;

 }

 finally

 {

 // [ZH] 关闭连接

 // [EN] Close the connection

 StatusCode disconnectCode =

 controller.Disconnect();

 if (disconnectCode != StatusCode.OK)

 {

 Console.WriteLine(

 disconnectCode.GetDescription()

);

 if (code == StatusCode.OK)

4.1 Basic Operations of the Robot | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 61 / 283

Method Name GetServoState()

Description Gets the current state of the Agilebot robot servo system.

Request Parameters None

Return Value
ServoState: Servo system state enum value
StatusCode: Result of function execution

Compatible robot software version
Collaborative (Copper): v7.5.0.0+
Industrial (Bronze): v7.5.0.0+

Example Code

4.1.7 Getting the Current Servo State

Arm/GetServoState.cs

 code = disconnectCode;

 }

 }

 return code;

 }

}

using Agilebot.IR;

using Agilebot.IR.Types;

public class GetServoState

{

 public static StatusCode Run(

 string controllerIP,

 bool useLocalProxy = true

)

 {

 // [ZH] 初始化捷勃特机器人

 // [EN] Initialize the Agilebot robot

cs

4.1 Basic Operations of the Robot | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 62 / 283

 Arm controller = new Arm(

 controllerIP,

 useLocalProxy

);

 // [ZH] 连接捷勃特机器人

 // [EN] Connect to the Agilebot robot

 StatusCode code = controller.ConnectSync();

 if (code != StatusCode.OK)

 {

 Console.WriteLine(

 "Connect Robot Failed: "

 + code.GetDescription()

);

 return code;

 }

 try

 {

 // [ZH] 获取伺服运行状态

 // [EN] Get the servo operating state

 (ServoState state, code) =

 controller.GetServoState();

 if (code != StatusCode.OK)

 {

 Console.WriteLine(

 "Get ServoState Failed: "

 + code.GetDescription()

);

 }

 else

 {

 Console.WriteLine("ServoState: " + state);

 }

 }

 catch (Exception ex)

 {

 Console.WriteLine(

 $"执行过程中发生异常/Exception occurred during execution: {ex.Messag

e}"

);

 code = StatusCode.OtherReason;

4.1 Basic Operations of the Robot | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 63 / 283

Method Name GetVersion()

Description
Gets the software version information of the Agilebot robot
controller.

Request Parameters None

Return Value
string: Controller software version string
StatusCode: Result of function execution

Compatible robot software
version

Collaborative (Copper): v7.5.0.0+
Industrial (Bronze): v7.5.0.0+

Example Code

4.1.8 Getting the Robot Controller Version

 }

 finally

 {

 // [ZH] 关闭连接

 // [EN] Close the connection

 StatusCode disconnectCode =

 controller.Disconnect();

 if (disconnectCode != StatusCode.OK)

 {

 Console.WriteLine(

 disconnectCode.GetDescription()

);

 if (code == StatusCode.OK)

 code = disconnectCode;

 }

 }

 return code;

 }

}

4.1 Basic Operations of the Robot | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 64 / 283

Arm/GetVersion.cs

using Agilebot.IR;

public class GetVersion

{

 public static StatusCode Run(

 string controllerIP,

 bool useLocalProxy = true

)

 {

 // [ZH] 初始化捷勃特机器人

 // [EN] Initialize the Agilebot robot

 Arm controller = new Arm(

 controllerIP,

 useLocalProxy

);

 // [ZH] 连接捷勃特机器人

 // [EN] Connect to the Agilebot robot

 StatusCode code = controller.ConnectSync();

 if (code != StatusCode.OK)

 {

 Console.WriteLine(

 "Connect Robot Failed: "

 + code.GetDescription()

);

 return code;

 }

 try

 {

 // [ZH] 获取机器人控制器版本

 // [EN] Get the robot controller version

 string version;

 (version, code) = controller.GetVersion();

 if (code != StatusCode.OK)

 {

 Console.WriteLine(

 "Get version Failed: "

 + code.GetDescription()

cs

4.1 Basic Operations of the Robot | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 65 / 283

4.1.9 Setting the Robot's LED Indicator Light

);

 }

 else

 {

 Console.WriteLine("Version: " + version);

 }

 }

 catch (Exception ex)

 {

 Console.WriteLine(

 $"执行过程中发生异常/Exception occurred during execution: {ex.Messag

e}"

);

 code = StatusCode.OtherReason;

 }

 finally

 {

 // [ZH] 关闭连接

 // [EN] Close the connection

 StatusCode disconnectCode =

 controller.Disconnect();

 if (disconnectCode != StatusCode.OK)

 {

 Console.WriteLine(

 disconnectCode.GetDescription()

);

 if (code == StatusCode.OK)

 code = disconnectCode;

 }

 }

 return code;

 }

}

4.1 Basic Operations of the Robot | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 66 / 283

Method Name SwitchLedLight(bool mode)

Description Controls the on/off state of the Agilebot robot LED indicator light.

Request Parameters
mode : bool LED indicator light control mode, true indicates turn on,

false indicates turn off

Return Value StatusCode: Operation execution result

Compatibility
Only supports collaborative robots, requires controller version 1.3.6 and
above, industrial robots not supported

Compatible robot
software version

Collaborative (Copper): v7.5.1.3+
Industrial (Bronze): Not supported

Example Code

Arm/SwitchLedLight.cs

using Agilebot.IR;

public class SwitchLedLight

{

 public static StatusCode Run(

 string controllerIP,

 bool useLocalProxy = true

)

 {

 // [ZH] 初始化捷勃特机器人

 // [EN] Initialize the Agilebot robot

 Arm controller = new Arm(

 controllerIP,

 useLocalProxy

);

 // [ZH] 连接捷勃特机器人

 // [EN] Connect to the Agilebot robot

 StatusCode code = controller.ConnectSync();

 if (code != StatusCode.OK)

 {

 Console.WriteLine(

 "Connect Robot Failed: "

cs

4.1 Basic Operations of the Robot | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 67 / 283

 + code.GetDescription()

);

 return code;

 }

 try

 {

 // [ZH] 关闭灯光

 // [EN] Turn off the LED light

 code = controller.SwitchLedLight(false);

 if (code != StatusCode.OK)

 {

 Console.WriteLine(

 "Switch Led Failed: "

 + code.GetDescription()

);

 }

 else

 {

 Console.WriteLine("Switch Led Light Off.");

 }

 Thread.Sleep(2000);

 // [ZH] 打开灯光

 // [EN] Turn on the LED light

 code = controller.SwitchLedLight(true);

 if (code != StatusCode.OK)

 {

 Console.WriteLine(

 "Switch Led Failed: "

 + code.GetDescription()

);

 }

 else

 {

 Console.WriteLine("Switch Led Light On.");

 }

 }

 catch (Exception ex)

 {

 Console.WriteLine(

4.1 Basic Operations of the Robot | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 68 / 283

Method Name ServoOn()

Description
Starts the servo system of the Agilebot robot, making the robot enter a
controllable state.

Request Parameters None

Return Value StatusCode: Result of function execution

Compatible robot software
version

Collaborative (Copper): v7.5.0.0+
Industrial (Bronze): v7.5.0.0+

4.1.10 Robot Servo On

 $"执行过程中发生异常/Exception occurred during execution: {ex.Messag

e}"

);

 code = StatusCode.OtherReason;

 }

 finally

 {

 // [ZH] 关闭连接

 // [EN] Disconnect from the robot

 StatusCode disconnectCode =

 controller.Disconnect();

 if (disconnectCode != StatusCode.OK)

 {

 Console.WriteLine(

 disconnectCode.GetDescription()

);

 if (code == StatusCode.OK)

 code = disconnectCode;

 }

 }

 return code;

 }

}

4.1 Basic Operations of the Robot | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 69 / 283

Method Name ServoOff()

Description
Turns off the servo system of the Agilebot robot, making the robot
enter a safe stop state.

Request Parameters None

Return Value StatusCode: Result of function execution

Compatible robot software
version

Collaborative (Copper): v7.5.0.0+
Industrial (Bronze): v7.5.0.0+

Method Name ServoReset()

Description
Resets the servo system of the Agilebot robot, clearing error states and
preparing for restart.

Request Parameters None

Return Value StatusCode: Result of function execution

Compatible robot software
version

Collaborative (Copper): v7.5.0.0+
Industrial (Bronze): v7.5.0.0+

Example Code

4.1.11 Robot Servo Off

4.1.12 Resetting the Robot Servo

Arm/ServoOperation.cs

using Agilebot.IR;

public class ServoOperation

{

 public static StatusCode Run(

 string controllerIP,

cs

4.1 Basic Operations of the Robot | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 70 / 283

 bool useLocalProxy = true

)

 {

 // [ZH] 初始化捷勃特机器人

 // [EN] Initialize the Agilebot robot

 Arm controller = new Arm(

 controllerIP,

 useLocalProxy

);

 // [ZH] 连接捷勃特机器人

 // [EN] Connect to the Agilebot robot

 StatusCode code = controller.ConnectSync();

 if (code != StatusCode.OK)

 {

 Console.WriteLine(

 "Connect Robot Failed: "

 + code.GetDescription()

);

 return code;

 }

 try

 {

 // [ZH] 机械臂伺服重置

 // [EN] Reset the robot arm servo

 code = controller.ServoReset();

 if (code != StatusCode.OK)

 {

 Console.WriteLine(

 "Servo Reset Failed: "

 + code.GetDescription()

);

 }

 else

 {

 Console.WriteLine("Servo Reset Success.");

 }

 Thread.Sleep(3000);

 // [ZH] 机械臂伺服关闭

4.1 Basic Operations of the Robot | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 71 / 283

 // [EN] Turn off the robot arm servo

 code = controller.ServoOff();

 if (code != StatusCode.OK)

 {

 Console.WriteLine(

 "Servo Off Failed: "

 + code.GetDescription()

);

 }

 else

 {

 Console.WriteLine("Servo Off Success.");

 }

 Thread.Sleep(3000);

 // [ZH] 机械臂伺服打开

 // [EN] Turn on the robot arm servo

 code = controller.ServoOn();

 if (code != StatusCode.OK)

 {

 Console.WriteLine(

 "Servo On Failed: "

 + code.GetDescription()

);

 }

 else

 {

 Console.WriteLine("Servo On Success.");

 }

 Thread.Sleep(3000);

 }

 catch (Exception ex)

 {

 Console.WriteLine(

 $"执行过程中发生异常/Exception occurred during execution: {ex.Messag

e}"

);

 code = StatusCode.OtherReason;

 }

 finally

4.1 Basic Operations of the Robot | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 72 / 283

Method Name Estop()

Description
Executes emergency stop of the Agilebot robot, immediately stopping all
motion and entering a safe state.

Request Parameters None

Return Value StatusCode: Emergency stop operation execution result

Compatible robot
software version

Collaborative (Copper): v7.5.0.0+
Industrial (Bronze): v7.5.0.0+

Example Code

4.1.13 Emergency Stop

Arm/Estop.cs

 {

 // [ZH] 关闭连接

 // [EN] Close the connection

 StatusCode disconnectCode =

 controller.Disconnect();

 if (disconnectCode != StatusCode.OK)

 {

 Console.WriteLine(

 disconnectCode.GetDescription()

);

 if (code == StatusCode.OK)

 code = disconnectCode;

 }

 }

 return code;

 }

}

4.1 Basic Operations of the Robot | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 73 / 283

using Agilebot.IR;

public class Estop

{

 public static StatusCode Run(

 string controllerIP,

 bool useLocalProxy = true

)

 {

 // [ZH] 初始化捷勃特机器人

 // [EN] Initialize the Agilebot robot

 Arm controller = new Arm(

 controllerIP,

 useLocalProxy

);

 // [ZH] 连接到捷勃特机器人

 // [EN] Connect to the Agilebot robot

 StatusCode code = controller.ConnectSync();

 if (code != StatusCode.OK)

 {

 Console.WriteLine(

 "Connect Robot Failed: "

 + code.GetDescription()

);

 return code;

 }

 try

 {

 // [ZH] 触发机器人急停

 // [EN] Trigger the robot emergency stop

 code = controller.Estop();

 if (code != StatusCode.OK)

 {

 Console.WriteLine(

 "Emergency Stop Failed: "

 + code.GetDescription()

);

 }

 else

cs

4.1 Basic Operations of the Robot | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 74 / 283

 {

 Console.WriteLine("Emergency Stop Success");

 }

 }

 catch (Exception ex)

 {

 Console.WriteLine(

 $"执行过程中发生异常/Exception occurred during execution: {ex.Messag

e}"

);

 code = StatusCode.OtherReason;

 }

 finally

 {

 // [ZH] 关闭连接

 // [EN] Close the connection

 StatusCode disconnectCode =

 controller.Disconnect();

 if (disconnectCode != StatusCode.OK)

 {

 Console.WriteLine(

 disconnectCode.GetDescription()

);

 if (code == StatusCode.OK)

 code = disconnectCode;

 }

 }

 return code;

 }

}

4.1 Basic Operations of the Robot | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 75 / 283

Method Name Motion.GetOVC()

Description
Gets the current robot's OVC (Overall Velocity Control) global velocity
ratio, with a range of 0~1.

Request Parameters None

Return Value
double: Global velocity ratio value
StatusCode: Result of function execution

Compatible robot software
version

Collaborative (Copper): v7.5.0.0+
Industrial (Bronze): v7.5.0.0+

Method Name Motion.GetOAC()

Description
Gets the current robot's OAC (Overall Acceleration Control) global
acceleration ratio, with a range of 0~1.2.

Request Parameters None

Return Value
double: Global acceleration ratio value
StatusCode: Result of function execution

Compatible robot
software version

Collaborative (Copper): v7.5.0.0+
Industrial (Bronze): v7.5.0.0+

4.2 Robot Motion Control and Status

4.2.1 Getting Robot Parameters

4.2.1.1 Getting OVC Overall Velocity Coefficient

4.2.1.2 Getting OAC Overall Acceleration Coefficient

4.2.1.3 Getting the Current TF

4.2 Robot Motion Control and Status | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 76 / 283

Method Name Motion.GetTF()

Description
Gets the current TF (Tool Frame) tool coordinate system index used by
the robot, with a range of 0~10.

Request Parameters None

Return Value
int: TF tool coordinate system index
StatusCode: Result of function execution

Compatible robot software
version

Collaborative (Copper): v7.5.0.0+
Industrial (Bronze): v7.5.0.0+

Method Name Motion.GetUF()

Description
Gets the current UF (User Frame) user coordinate system index used by
the robot, with a range of 0~10.

Request Parameters None

Return Value
int: UF user coordinate system index
StatusCode: Result of function execution

Compatible robot
software version

Collaborative (Copper): v7.5.0.0+
Industrial (Bronze): v7.5.0.0+

Method Name Motion.GetTCS()

Description
Gets the current TCS (Teach Coordinate System) teaching coordinate system
type used by the robot, see TCSType for details.

Request Parameters None

Return Value
TCSType: TCS teaching coordinate system type enum value
StatusCode: Result of function execution

Compatible robot
software version

Collaborative (Copper): v7.5.0.0+
Industrial (Bronze): v7.5.0.0+

4.2.1.4 Getting the Current UF

4.2.1.5 Getting the Current TCS Teaching Coordinate System

4.2 Robot Motion Control and Status | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 77 / 283

Example Code

Motion/GetMotionParameters.cs

using Agilebot.IR;

using Agilebot.IR.Types;

public class GetMotionParameters

{

 public static StatusCode Run(

 string controllerIP,

 bool useLocalProxy = true

)

 {

 // [ZH] 初始化捷勃特机器人

 // [EN] Initialize the Agilebot robot

 Arm controller = new Arm(

 controllerIP,

 useLocalProxy

);

 // [ZH] 连接捷勃特机器人

 // [EN] Connect to the Agilebot robot

 StatusCode code = controller.ConnectSync();

 Console.WriteLine(

 code != StatusCode.OK

 ? code.GetDescription()

 : "连接成功/Successfully connected."

);

 if (code != StatusCode.OK)

 {

 return code;

 }

 try

 {

 // [ZH] 获取 OVC 全局速度比率

 // [EN] Get OVC global speed ratio

 double ovc;

 (ovc, code) = controller.Motion.GetOVC();

cs

4.2 Robot Motion Control and Status | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 78 / 283

 if (code == StatusCode.OK)

 {

 Console.WriteLine($"OVC = {ovc}");

 }

 else

 {

 Console.WriteLine(

 $"获取OVC失败: {code.GetDescription()}"

);

 }

 // [ZH] 获取 OAC 全局加速度比率

 // [EN] Get OAC global acceleration ratio

 double oac;

 (oac, code) = controller.Motion.GetOAC();

 if (code == StatusCode.OK)

 {

 Console.WriteLine($"OAC = {oac}");

 }

 else

 {

 Console.WriteLine(

 $"获取OAC失败: {code.GetDescription()}"

);

 }

 // [ZH] 获取当前使用的 TF

 // [EN] Get current TF (Tool Frame)

 int tf;

 (tf, code) = controller.Motion.GetTF();

 if (code == StatusCode.OK)

 {

 Console.WriteLine($"TF = {tf}");

 }

 else

 {

 Console.WriteLine(

 $"获取TF失败: {code.GetDescription()}"

);

 }

 // [ZH] 获取当前使用的 UF

4.2 Robot Motion Control and Status | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 79 / 283

 // [EN] Get current UF (User Frame)

 int uf;

 (uf, code) = controller.Motion.GetUF();

 if (code == StatusCode.OK)

 {

 Console.WriteLine($"UF = {uf}");

 }

 else

 {

 Console.WriteLine(

 $"获取UF失败: {code.GetDescription()}"

);

 }

 // [ZH] 获取当前使用的 TCS 示教坐标系

 // [EN] Get current TCS teaching coordinate system

 TCSType tcs;

 (tcs, code) = controller.Motion.GetTCS();

 if (code == StatusCode.OK)

 {

 Console.WriteLine($"TCSType = {tcs}");

 }

 else

 {

 Console.WriteLine(

 $"获取TCS失败: {code.GetDescription()}"

);

 }

 // [ZH] 获取机器人软限位

 // [EN] Get robot soft limits

 List<List<double>> softLimit;

 (softLimit, code) =

 controller.Motion.GetUserSoftLimit();

 if (code == StatusCode.OK)

 {

 Console.WriteLine("软限位信息:");

 for (int i = 0; i < softLimit.Count; i++)

 {

 Console.WriteLine(

 $"轴{i + 1}: 下限={softLimit[i][0]}, 上限={softLimit[i][1]}"

);

4.2 Robot Motion Control and Status | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 80 / 283

4.2.2 Setting Robot Parameters

4.2.2.1 Setting OVC Overall Velocity Coefficient

 }

 }

 else

 {

 Console.WriteLine(

 $"获取软限位失败: {code.GetDescription()}"

);

 }

 }

 catch (Exception ex)

 {

 Console.WriteLine(

 $"执行过程中发生异常/Exception occurred during execution: {ex.Messag

e}"

);

 code = StatusCode.OtherReason;

 }

 finally

 {

 // [ZH] 关闭连接

 // [EN] Close the connection

 StatusCode disconnectCode =

 controller.Disconnect();

 Console.WriteLine(

 disconnectCode != StatusCode.OK

 ? disconnectCode.GetDescription()

 : "Successfully disconnected."

);

 }

 return code;

 }

}

4.2 Robot Motion Control and Status | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 81 / 283

Method Name Motion.SetOVC(double value)

Description
Sets the current robot's OVC (Overall Velocity Control) global
velocity ratio.

Request Parameters value : double velocity ratio, range 0~1

Return Value StatusCode: Result of function execution

Compatible robot software
version

Collaborative (Copper): v7.5.0.0+
Industrial (Bronze): v7.5.0.0+

Method Name Motion.SetOAC(double value)

Description
Sets the current robot's OAC (Overall Acceleration Control) global
acceleration ratio.

Request Parameters value : double acceleration ratio, range 0~1.2

Return Value StatusCode: Result of function execution

Compatible robot software
version

Collaborative (Copper): v7.5.0.0+
Industrial (Bronze): v7.5.0.0+

Method Name Motion.SetTF(int value)

Description Sets the current TF (Tool Frame) tool coordinate system index.

Request Parameters value : int TF index, range 0~10

Return Value StatusCode: Result of function execution

Compatible robot software version
Collaborative (Copper): v7.5.0.0+
Industrial (Bronze): v7.5.0.0+

4.2.2.2 Setting OAC Overall Acceleration Coefficient

4.2.2.3 Setting the Current TF Tool Coordinate System Index

4.2.2.4 Setting the Current UF User Coordinate System Index

4.2 Robot Motion Control and Status | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 82 / 283

Method Name Motion.SetUF(int value)

Description Sets the current UF (User Frame) user coordinate system index.

Request Parameters value : int UF index, range 0~10

Return Value StatusCode: Result of function execution

Compatible robot software version
Collaborative (Copper): v7.5.0.0+
Industrial (Bronze): v7.5.0.0+

Method Name Motion.SetTCS(TCSType value)

Description
Sets the current TCS (Teach Coordinate System) teaching coordinate
system.

Request Parameters value : TCSType TCS teaching coordinate system type

Return Value StatusCode: Result of function execution

Compatible robot software
version

Collaborative (Copper): v7.5.0.0+
Industrial (Bronze): v7.5.0.0+

Example Code

4.2.2.5 Setting the Current TCS Teaching Coordinate System

Motion/SetMotionParameters.cs

using Agilebot.IR;

using Agilebot.IR.Types;

public class SetMotionParameters

{

 public static StatusCode Run(

 string controllerIP,

 bool useLocalProxy = true

)

 {

 // [ZH] 初始化捷勃特机器人

 // [EN] Initialize the Agilebot robot

cs

4.2 Robot Motion Control and Status | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 83 / 283

 Arm controller = new Arm(

 controllerIP,

 useLocalProxy

);

 // [ZH] 连接捷勃特机器人

 // [EN] Connect to the Agilebot robot

 StatusCode code = controller.ConnectSync();

 Console.WriteLine(

 code != StatusCode.OK

 ? code.GetDescription()

 : "连接成功/Successfully connected."

);

 if (code != StatusCode.OK)

 {

 return code;

 }

 try

 {

 // [ZH] 设置 OVC 全局速度比率

 // [EN] Set OVC global speed ratio

 code = controller.Motion.SetOVC(0.5);

 if (code == StatusCode.OK)

 {

 Console.WriteLine("设置OVC成功");

 }

 else

 {

 Console.WriteLine(

 $"设置OVC失败: {code.GetDescription()}"

);

 }

 // [ZH] 设置 OAC 全局加速度比率

 // [EN] Set OAC global acceleration ratio

 code = controller.Motion.SetOAC(0.8);

 if (code == StatusCode.OK)

 {

 Console.WriteLine("设置OAC成功");

 }

4.2 Robot Motion Control and Status | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 84 / 283

 else

 {

 Console.WriteLine(

 $"设置OAC失败: {code.GetDescription()}"

);

 }

 // [ZH] 设置当前使用的 TF 用户坐标系编号

 // [EN] Set current TF (Tool Frame) user coordinate system number

 code = controller.Motion.SetTF(2);

 if (code == StatusCode.OK)

 {

 Console.WriteLine("设置TF成功");

 }

 else

 {

 Console.WriteLine(

 $"设置TF失败: {code.GetDescription()}"

);

 }

 // [ZH] 设置当前使用的 UF 工具坐标系编号

 // [EN] Set current UF (User Frame) tool coordinate system number

 code = controller.Motion.SetUF(1);

 if (code == StatusCode.OK)

 {

 Console.WriteLine("设置UF成功");

 }

 else

 {

 Console.WriteLine(

 $"设置UF失败: {code.GetDescription()}"

);

 }

 // [ZH] 设置当前使用的 TCS 示教坐标系

 // [EN] Set current TCS teaching coordinate system

 code = controller.Motion.SetTCS(TCSType.TOOL);

 if (code == StatusCode.OK)

 {

 Console.WriteLine("设置TCS成功");

 }

4.2 Robot Motion Control and Status | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 85 / 283

 else

 {

 Console.WriteLine(

 $"设置TCS失败: {code.GetDescription()}"

);

 }

 // [ZH] 设置UDP位置控制的相关参数

 // [EN] Set UDP position control related parameters

 code =

 controller.Motion.SetPositionTrajectoryParams(

 10,

 20,

 10,

 10

);

 if (code == StatusCode.OK)

 {

 Console.WriteLine("设置位置控制参数成功");

 }

 else

 {

 Console.WriteLine(

 $"设置位置控制参数失败: {code.GetDescription()}"

);

 }

 }

 catch (Exception ex)

 {

 Console.WriteLine(

 $"执行过程中发生异常/Exception occurred during execution: {ex.Messag

e}"

);

 code = StatusCode.OtherReason;

 }

 finally

 {

 // [ZH] 关闭连接

 // [EN] Close the connection

 StatusCode disconnectCode =

 controller.Disconnect();

 Console.WriteLine(

4.2 Robot Motion Control and Status | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 86 / 283

Method Name
Motion.ConvertCartToJoint(MotionPose pose , int ufIndex = 0, int
tfIndex = 0)

Description Converts pose data from Cartesian coordinates to joint coordinates.

Request Parameters
pose : MotionPose Robot pose data
ufIndex : int User coordinate system index, default is 0
tfIndex : int Tool coordinate system index, default is 0

Return Value
MotionPose: Converted robot pose data
StatusCode: Conversion operation execution result

Compatible robot software
version

Collaborative (Copper): v7.5.0.0+
Industrial (Bronze): v7.5.0.0+

Example Code

4.2.3 Converting Cartesian Position to Joint Values

Motion/ConvertCartToJoint.cs

 disconnectCode != StatusCode.OK

 ? disconnectCode.GetDescription()

 : "Successfully disconnected."

);

 }

 return code;

 }

}

using Agilebot.IR;

using Agilebot.IR.Motion;

using Agilebot.IR.Types;

public class ConvertCartToJoint

{

 public static StatusCode Run(

cs

4.2 Robot Motion Control and Status | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 87 / 283

 string controllerIP,

 bool useLocalProxy = true

)

 {

 // [ZH] 初始化捷勃特机器人

 // [EN] Initialize the Agilebot robot

 Arm controller = new Arm(

 controllerIP,

 useLocalProxy

);

 // [ZH] 连接捷勃特机器人

 // [EN] Connect to the Agilebot robot

 StatusCode code = controller.ConnectSync();

 Console.WriteLine(

 code != StatusCode.OK

 ? code.GetDescription()

 : "连接成功/Successfully connected."

);

 if (code != StatusCode.OK)

 {

 return code;

 }

 try

 {

 // [ZH] 创建笛卡尔位姿

 // [EN] Create Cartesian pose

 MotionPose motionPose = new MotionPose();

 motionPose.Pt = PoseType.Cart;

 motionPose.CartData.Position = new Position

 {

 X = 300,

 Y = 300,

 Z = 300,

 A = 0,

 B = 0,

 C = 0,

 };

 motionPose.CartData.Posture = new Posture

 {

4.2 Robot Motion Control and Status | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 88 / 283

 WristFlip = 1,

 ArmUpDown = 1,

 ArmBackFront = 1,

 ArmLeftRight = 1,

 TurnCircle = new List<int>(9)

 {

 0,

 0,

 0,

 0,

 0,

 0,

 0,

 0,

 0,

 },

 };

 // [ZH] 将笛卡尔点位转换成关节值点位

 // [EN] Convert Cartesian pose to joint pose

 MotionPose convertPose;

 (convertPose, code) =

 controller.Motion.ConvertCartToJoint(

 motionPose

);

 if (code == StatusCode.OK)

 {

 Console.WriteLine("笛卡尔转关节成功:");

 Console.WriteLine(

 $"关节值: J1={convertPose.Joint.J1}, J2={convertPose.Joint.J2},

J3={convertPose.Joint.J3}, J4={convertPose.Joint.J4}, J5={convertPose.Joint.J5}, J6

={convertPose.Joint.J6}"

);

 }

 else

 {

 Console.WriteLine(

 $"笛卡尔转关节失败: {code.GetDescription()}"

);

 }

 }

 catch (Exception ex)

4.2 Robot Motion Control and Status | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 89 / 283

Method Name
Motion.ConvertJointToCart(MotionPose pose , int ufIndex = 0, int
tfIndex = 0)

Description Converts pose data from joint coordinates to Cartesian coordinates.

Request Parameters
pose : MotionPose Robot pose data
ufIndex : int User coordinate system index, default is 0
tfIndex : int Tool coordinate system index, default is 0

Return Value
MotionPose: Converted robot pose data
StatusCode: Conversion operation execution result

4.2.4 Converting Joint Values to Cartesian Position

 {

 Console.WriteLine(

 $"执行过程中发生异常/Exception occurred during execution: {ex.Messag

e}"

);

 code = StatusCode.OtherReason;

 }

 finally

 {

 // [ZH] 关闭连接

 // [EN] Close the connection

 StatusCode disconnectCode =

 controller.Disconnect();

 Console.WriteLine(

 disconnectCode != StatusCode.OK

 ? disconnectCode.GetDescription()

 : "Successfully disconnected."

);

 }

 return code;

 }

}

4.2 Robot Motion Control and Status | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 90 / 283

Method Name
Motion.ConvertJointToCart(MotionPose pose , int ufIndex = 0, int
tfIndex = 0)

Compatible robot software
version

Collaborative (Copper): v7.5.0.0+
Industrial (Bronze): v7.5.0.0+

Example Code

Motion/ConvertJointToCart.cs

using Agilebot.IR;

using Agilebot.IR.Motion;

using Agilebot.IR.Types;

public class ConvertJointToCart

{

 public static StatusCode Run(

 string controllerIP,

 bool useLocalProxy = true

)

 {

 // [ZH] 初始化捷勃特机器人

 // [EN] Initialize the Agilebot robot

 Arm controller = new Arm(

 controllerIP,

 useLocalProxy

);

 // [ZH] 连接捷勃特机器人

 // [EN] Connect to the Agilebot robot

 StatusCode code = controller.ConnectSync();

 Console.WriteLine(

 code != StatusCode.OK

 ? code.GetDescription()

 : "连接成功/Successfully connected."

);

 if (code != StatusCode.OK)

 {

 return code;

 }

cs

4.2 Robot Motion Control and Status | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 91 / 283

 try

 {

 // [ZH] 创建关节位姿

 // [EN] Create joint pose

 MotionPose motionPose = new MotionPose();

 motionPose.Pt = PoseType.Joint;

 motionPose.Joint = new Joint

 {

 J1 = 0,

 J2 = 0,

 J3 = 60,

 J4 = 60,

 J5 = 0,

 J6 = 0,

 };

 // [ZH] 将关节值点位转换成笛卡尔点位

 // [EN] Convert joint pose to Cartesian pose

 MotionPose convertPose;

 (convertPose, code) =

 controller.Motion.ConvertJointToCart(

 motionPose

);

 if (code == StatusCode.OK)

 {

 Console.WriteLine("关节转笛卡尔成功:");

 Console.WriteLine(

 $"位置: X={convertPose.CartData.Position.X}, Y={convertPose.Car

tData.Position.Y}, Z={convertPose.CartData.Position.Z}"

);

 Console.WriteLine(

 $"姿态: A={convertPose.CartData.Position.A}, B={convertPose.Car

tData.Position.B}, C={convertPose.CartData.Position.C}"

);

 }

 else

 {

 Console.WriteLine(

 $"关节转笛卡尔失败: {code.GetDescription()}"

);

 }

4.2 Robot Motion Control and Status | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 92 / 283

Method Name
Motion.MoveJoint(MotionPose pose , double vel = 1, double acc

= 1)

Description
Moves the robot end effector to a specified position, using the fastest
path (joint motion).

Request Parameters pose : MotionPose Target position coordinates in Cartesian space or
joint coordinate system
vel : double Motion speed, range 0~1, representing multiple of

maximum speed

4.2.5 Moving the Robot End Effector to a Specified Position

 }

 catch (Exception ex)

 {

 Console.WriteLine(

 $"执行过程中发生异常/Exception occurred during execution: {ex.Messag

e}"

);

 code = StatusCode.OtherReason;

 }

 finally

 {

 // [ZH] 关闭连接

 // [EN] Close the connection

 StatusCode disconnectCode =

 controller.Disconnect();

 Console.WriteLine(

 disconnectCode != StatusCode.OK

 ? disconnectCode.GetDescription()

 : "Successfully disconnected."

);

 }

 return code;

 }

}

4.2 Robot Motion Control and Status | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 93 / 283

Method Name
Motion.MoveJoint(MotionPose pose , double vel = 1, double acc

= 1)

acc : double Acceleration, range 0~1.2, representing multiple of
maximum acceleration

Return Value StatusCode: Motion command execution result

Compatible robot software
version

Collaborative (Copper): v7.5.0.0+
Industrial (Bronze): v7.5.0.0+

Example Code

Motion/MoveJoint.cs

using Agilebot.IR;

using Agilebot.IR.Motion;

using Agilebot.IR.Types;

public class MoveJoint

{

 public static StatusCode Run(

 string controllerIP,

 bool useLocalProxy = true

)

 {

 // [ZH] 初始化捷勃特机器人

 // [EN] Initialize the Agilebot robot

 Arm controller = new Arm(

 controllerIP,

 useLocalProxy

);

 // [ZH] 连接捷勃特机器人

 // [EN] Connect to the Agilebot robot

 StatusCode code = controller.ConnectSync();

 Console.WriteLine(

 code != StatusCode.OK

 ? code.GetDescription()

 : "连接成功/Successfully connected."

);

cs

4.2 Robot Motion Control and Status | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 94 / 283

 if (code != StatusCode.OK)

 {

 return code;

 }

 try

 {

 // [ZH] 创建关节位姿

 // [EN] Create joint pose

 MotionPose motionPose = new MotionPose();

 motionPose.Pt = PoseType.Joint;

 motionPose.Joint = new Joint

 {

 J1 = 10,

 J2 = 30,

 J3 = 30,

 J4 = 0,

 J5 = 0,

 J6 = 0,

 };

 // [ZH] 让机器人末端移动到指定的位置

 // [EN] Move robot end to specified position

 code = controller.Motion.MoveJoint(

 motionPose,

 0.5,

 0.8

);

 if (code == StatusCode.OK)

 {

 Console.WriteLine("关节运动请求成功");

 }

 else

 {

 Console.WriteLine(

 $"关节运动失败: {code.GetDescription()}"

);

 }

 }

 catch (Exception ex)

 {

 Console.WriteLine(

4.2 Robot Motion Control and Status | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 95 / 283

Method Name
Motion.MoveLine(MotionPose pose , double vel = 100, double acc

= 1)

Description
Moves the robot end effector along a straight line to a specified position,
using a linear path between two points.

Request Parameters

pose : MotionPose Target position coordinates in Cartesian space or joint
coordinate system
vel : double Motion speed, range 0~5000mm/s, representing robot end

effector movement speed
acc : double Acceleration, range 0~1.2, representing multiple of

maximum acceleration

4.2.6 Moving the Robot End Effector Along a Straight Line to a
Specified Position

 $"执行过程中发生异常/Exception occurred during execution: {ex.Messag

e}"

);

 code = StatusCode.OtherReason;

 }

 finally

 {

 // [ZH] 关闭连接

 // [EN] Close the connection

 StatusCode disconnectCode =

 controller.Disconnect();

 Console.WriteLine(

 disconnectCode != StatusCode.OK

 ? disconnectCode.GetDescription()

 : "Successfully disconnected."

);

 }

 return code;

 }

}

4.2 Robot Motion Control and Status | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 96 / 283

Method Name
Motion.MoveLine(MotionPose pose , double vel = 100, double acc

= 1)

Return Value StatusCode: Motion command execution result

Compatible robot
software version

Collaborative (Copper): v7.5.0.0+
Industrial (Bronze): v7.5.0.0+

Example Code

Motion/MoveLine.cs

using Agilebot.IR;

using Agilebot.IR.Motion;

using Agilebot.IR.Types;

public class MoveLine

{

 public static StatusCode Run(

 string controllerIP,

 bool useLocalProxy = true

)

 {

 // [ZH] 初始化捷勃特机器人

 // [EN] Initialize the Agilebot robot

 Arm controller = new Arm(

 controllerIP,

 useLocalProxy

);

 // [ZH] 连接捷勃特机器人

 // [EN] Connect to the Agilebot robot

 StatusCode code = controller.ConnectSync();

 Console.WriteLine(

 code != StatusCode.OK

 ? code.GetDescription()

 : "连接成功/Successfully connected."

);

 if (code != StatusCode.OK)

 {

cs

4.2 Robot Motion Control and Status | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 97 / 283

 return code;

 }

 try

 {

 // [ZH] 创建关节位姿

 // [EN] Create joint pose

 MotionPose motionPose = new MotionPose();

 motionPose.Pt = PoseType.Joint;

 motionPose.Joint = new Joint

 {

 J1 = 20,

 J2 = 40,

 J3 = 40,

 J4 = 5,

 J5 = 5,

 J6 = 5,

 };

 // [ZH] 让机器人末端沿直线移动到指定的位置

 // [EN] Move robot end in straight line to specified position

 code = controller.Motion.MoveLine(

 motionPose,

 100,

 1.0

);

 if (code == StatusCode.OK)

 {

 Console.WriteLine("直线运动请求成功");

 }

 else

 {

 Console.WriteLine(

 $"直线运动失败: {code.GetDescription()}"

);

 }

 }

 catch (Exception ex)

 {

 Console.WriteLine(

 $"执行过程中发生异常/Exception occurred during execution: {ex.Messag

e}"

4.2 Robot Motion Control and Status | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 98 / 283

Method Name
Motion.MoveCircle(MotionPose pose1 , MotionPose pose2 , double
vel = 100, double acc = 1)

Description Moves the robot end effector along an arc to a specified position.

Request Parameters

pose1 : MotionPose Robot motion intermediate pose
pose2 : MotionPose Robot motion final pose
vel : double Motion speed, range 0~5000mm/s, representing robot end

effector movement speed
acc : double Acceleration, range 0~1.2, representing multiple of

maximum acceleration

Return Value StatusCode: Motion command execution result

Compatible robot
software version

Collaborative (Copper): v7.5.0.0+
Industrial (Bronze): v7.5.0.0+

4.2.7 Moving the Robot End Effector Along an Arc to a Specified
Position

);

 code = StatusCode.OtherReason;

 }

 finally

 {

 // [ZH] 关闭连接

 // [EN] Close the connection

 StatusCode disconnectCode =

 controller.Disconnect();

 Console.WriteLine(

 disconnectCode != StatusCode.OK

 ? disconnectCode.GetDescription()

 : "Successfully disconnected."

);

 }

 return code;

 }

}

4.2 Robot Motion Control and Status | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 99 / 283

Example Code

Motion/MoveCircle.cs

using Agilebot.IR;

using Agilebot.IR.Motion;

using Agilebot.IR.Types;

public class MoveCircle

{

 public static StatusCode Run(

 string controllerIP,

 bool useLocalProxy = true

)

 {

 // [ZH] 初始化捷勃特机器人

 // [EN] Initialize the Agilebot robot

 Arm controller = new Arm(

 controllerIP,

 useLocalProxy

);

 // [ZH] 连接捷勃特机器人

 // [EN] Connect to the Agilebot robot

 StatusCode code = controller.ConnectSync();

 Console.WriteLine(

 code != StatusCode.OK

 ? code.GetDescription()

 : "连接成功/Successfully connected."

);

 if (code != StatusCode.OK)

 {

 return code;

 }

 try

 {

 // [ZH] 创建第一个位姿（途径点）

 // [EN] Create first pose (waypoint)

 MotionPose motionPose1 = new MotionPose();

cs

4.2 Robot Motion Control and Status | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 100 / 283

 motionPose1.Pt = PoseType.Joint;

 motionPose1.Joint = new Joint

 {

 J1 = 0,

 J2 = 0,

 J3 = 60,

 J4 = 60,

 J5 = 0,

 J6 = 0,

 };

 // [ZH] 创建第二个位姿（终点）

 // [EN] Create second pose (endpoint)

 MotionPose motionPose2 = new MotionPose();

 motionPose2.Pt = PoseType.Joint;

 motionPose2.Joint = new Joint

 {

 J1 = 0,

 J2 = 30,

 J3 = 70,

 J4 = 40,

 J5 = 0,

 J6 = 0,

 };

 // [ZH] 让机器人末端沿弧线移动到指定的位置

 // [EN] Move robot end in arc to specified position

 code = controller.Motion.MoveCircle(

 motionPose1,

 motionPose2,

 100,

 1.0

);

 if (code == StatusCode.OK)

 {

 Console.WriteLine("弧线运动请求成功");

 }

 else

 {

 Console.WriteLine(

 $"弧线运动失败: {code.GetDescription()}"

);

4.2 Robot Motion Control and Status | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 101 / 283

Method Name
Motion.GetCurrentPose(PoseType pt , int ufIndex = 0, int tfIndex = 0
)

Description
Gets the current pose of the robot, which can be pose information in
Cartesian space or joint coordinate system.

Request Parameters pt : PoseType Pose type
ufIndex : int When using PoseType.CART, user coordinate system index

must be provided, default is 0

4.2.8 Getting the Current Pose of the Robot

 }

 }

 catch (Exception ex)

 {

 Console.WriteLine(

 $"执行过程中发生异常/Exception occurred during execution: {ex.Messag

e}"

);

 code = StatusCode.OtherReason;

 }

 finally

 {

 // [ZH] 关闭连接

 // [EN] Close the connection

 StatusCode disconnectCode =

 controller.Disconnect();

 Console.WriteLine(

 disconnectCode != StatusCode.OK

 ? disconnectCode.GetDescription()

 : "Successfully disconnected."

);

 }

 return code;

 }

}

4.2 Robot Motion Control and Status | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 102 / 283

Method Name
Motion.GetCurrentPose(PoseType pt , int ufIndex = 0, int tfIndex = 0
)

tfIndex : int When using PoseType.CART, tool coordinate system index
must be provided, default is 0

Return Value
MotionPose: Robot pose data
StatusCode: Get operation execution result

Compatible robot
software version

Collaborative (Copper): v7.5.0.0+
Industrial (Bronze): v7.5.0.0+

Example Code

Motion/GetCurrentPose.cs

using Agilebot.IR;

using Agilebot.IR.Motion;

using Agilebot.IR.Types;

public class GetCurrentPose

{

 public static StatusCode Run(

 string controllerIP,

 bool useLocalProxy = true

)

 {

 // [ZH] 初始化捷勃特机器人

 // [EN] Initialize the Agilebot robot

 Arm controller = new Arm(

 controllerIP,

 useLocalProxy

);

 // [ZH] 连接捷勃特机器人

 // [EN] Connect to the Agilebot robot

 StatusCode code = controller.ConnectSync();

 Console.WriteLine(

 code != StatusCode.OK

 ? code.GetDescription()

 : "连接成功/Successfully connected."

);

cs

4.2 Robot Motion Control and Status | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 103 / 283

 if (code != StatusCode.OK)

 {

 return code;

 }

 try

 {

 // [ZH] 获取机器人的当前位姿（笛卡尔坐标）

 // [EN] Get robot current pose (Cartesian coordinates)

 MotionPose cartPose;

 (cartPose, code) =

 controller.Motion.GetCurrentPose(

 PoseType.Cart,

 0,

 0

);

 if (code == StatusCode.OK)

 {

 Console.WriteLine("当前笛卡尔位姿:");

 Console.WriteLine(

 $"位置: X={cartPose.CartData.Position.X}, Y={cartPose.CartData.

Position.Y}, Z={cartPose.CartData.Position.Z}"

);

 Console.WriteLine(

 $"姿态: A={cartPose.CartData.Position.A}, B={cartPose.CartData.

Position.B}, C={cartPose.CartData.Position.C}"

);

 }

 else

 {

 Console.WriteLine(

 $"获取笛卡尔位姿失败: {code.GetDescription()}"

);

 }

 // [ZH] 获取机器人的当前位姿（关节坐标）

 // [EN] Get robot current pose (joint coordinates)

 MotionPose jointPose;

 (jointPose, code) =

 controller.Motion.GetCurrentPose(

 PoseType.Joint,

4.2 Robot Motion Control and Status | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 104 / 283

 0,

 0

);

 if (code == StatusCode.OK)

 {

 Console.WriteLine("当前关节位姿:");

 Console.WriteLine(

 $"关节值: J1={jointPose.Joint.J1}, J2={jointPose.Joint.J2}, J3=

{jointPose.Joint.J3}, J4={jointPose.Joint.J4}, J5={jointPose.Joint.J5}, J6={jointPo

se.Joint.J6}"

);

 }

 else

 {

 Console.WriteLine(

 $"获取关节位姿失败: {code.GetDescription()}"

);

 }

 }

 catch (Exception ex)

 {

 Console.WriteLine(

 $"执行过程中发生异常/Exception occurred during execution: {ex.Messag

e}"

);

 code = StatusCode.OtherReason;

 }

 finally

 {

 // [ZH] 关闭连接

 // [EN] Close the connection

 StatusCode disconnectCode =

 controller.Disconnect();

 Console.WriteLine(

 disconnectCode != StatusCode.OK

 ? disconnectCode.GetDescription()

 : "Successfully disconnected."

);

 }

 return code;

4.2 Robot Motion Control and Status | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 105 / 283

Method Name Motion.GetDHParam()

Description Gets the robot's DH (Denavit-Hartenberg) parameters.

Request Parameters None

Return Value
List<DHparam>: DH parameter list
StatusCode: Get operation execution result

Compatible robot software version
Collaborative (Copper): v7.5.0.0+
Industrial (Bronze): Not supported

Example Code

4.2.9 Getting the Robot's DH Parameters

Motion/GetDHParam.cs

 }

}

using Agilebot.IR;

using Agilebot.IR.Types;

public class GetDHParam

{

 public static StatusCode Run(

 string controllerIP,

 bool useLocalProxy = true

)

 {

 // [ZH] 初始化捷勃特机器人

 // [EN] Initialize the Agilebot robot

 Arm controller = new Arm(

 controllerIP,

 useLocalProxy

);

cs

4.2 Robot Motion Control and Status | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 106 / 283

 // [ZH] 连接捷勃特机器人

 // [EN] Connect to the Agilebot robot

 StatusCode code = controller.ConnectSync();

 Console.WriteLine(

 code != StatusCode.OK

 ? code.GetDescription()

 : "连接成功/Successfully connected."

);

 if (code != StatusCode.OK)

 {

 return code;

 }

 try

 {

 // [ZH] 获取机器人的DH参数

 // [EN] Get robot DH parameters

 List<DHparam> dhParamsList;

 (dhParamsList, code) =

 controller.Motion.GetDHParam(1);

 if (code == StatusCode.OK)

 {

 Console.WriteLine("获取DH参数成功:");

 for (int i = 0; i < dhParamsList.Count; i++)

 {

 var dh = dhParamsList[i];

 Console.WriteLine(

 $"轴{i + 1}: Alpha={dh.alpha}, A={dh.a}, D={dh.d}, Offset=

{dh.offset}"

);

 }

 }

 else

 {

 Console.WriteLine(

 $"获取DH参数失败: {code.GetDescription()}"

);

 }

 }

 catch (Exception ex)

 {

4.2 Robot Motion Control and Status | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 107 / 283

Method Name Motion.SetDHParam(List<DHparam> dHparams)

Description Sets the robot's DH (Denavit-Hartenberg) parameters.

Request Parameters dHparams : List<DHparam> DH parameter list

Return Value StatusCode: Set operation execution result

Compatible robot software version
Collaborative (Copper): v7.5.0.0+
Industrial (Bronze): Not supported

Example Code

4.2.10 Setting the Robot's DH Parameters

 Console.WriteLine(

 $"执行过程中发生异常/Exception occurred during execution: {ex.Messag

e}"

);

 code = StatusCode.OtherReason;

 }

 finally

 {

 // [ZH] 关闭连接

 // [EN] Close the connection

 StatusCode disconnectCode =

 controller.Disconnect();

 Console.WriteLine(

 disconnectCode != StatusCode.OK

 ? disconnectCode.GetDescription()

 : "Successfully disconnected."

);

 }

 return code;

 }

}

4.2 Robot Motion Control and Status | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 108 / 283

Motion/SetDHParam.cs

using Agilebot.IR;

using Agilebot.IR.Types;

public class SetDHParam

{

 public static StatusCode Run(

 string controllerIP,

 bool useLocalProxy = true

)

 {

 // [ZH] 初始化捷勃特机器人

 // [EN] Initialize the Agilebot robot

 Arm controller = new Arm(

 controllerIP,

 useLocalProxy

);

 // [ZH] 连接捷勃特机器人

 // [EN] Connect to the Agilebot robot

 StatusCode code = controller.ConnectSync();

 Console.WriteLine(

 code != StatusCode.OK

 ? code.GetDescription()

 : "连接成功/Successfully connected."

);

 if (code != StatusCode.OK)

 {

 return code;

 }

 try

 {

 // [ZH] 先获取当前的DH参数

 // [EN] First get current DH parameters

 List<DHparam> dhParamsList;

 (dhParamsList, code) =

 controller.Motion.GetDHParam(1);

 if (code != StatusCode.OK)

cs

4.2 Robot Motion Control and Status | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 109 / 283

 {

 Console.WriteLine(

 $"获取DH参数失败: {code.GetDescription()}"

);

 return code;

 }

 Console.WriteLine(

 "获取DH参数成功，准备设置相同的参数..."

);

 // [ZH] 设置DH参数（这里设置为相同的参数作为示例）

 // [EN] Set DH parameters (set same parameters as example)

 code = controller.Motion.SetDHParam(

 dhParamsList

);

 if (code == StatusCode.OK)

 {

 Console.WriteLine("设置DH参数成功");

 }

 else

 {

 Console.WriteLine(

 $"设置DH参数失败: {code.GetDescription()}"

);

 }

 }

 catch (Exception ex)

 {

 Console.WriteLine(

 $"执行过程中发生异常/Exception occurred during execution: {ex.Messag

e}"

);

 code = StatusCode.OtherReason;

 }

 finally

 {

 // [ZH] 关闭连接

 // [EN] Close the connection

 StatusCode disconnectCode =

 controller.Disconnect();

 Console.WriteLine(

4.2 Robot Motion Control and Status | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 110 / 283

Method Name Motion.GetDragSet()

Description
Gets the current robot axis lock status, which only applies to teaching
movements.

Request Parameters None

Return Value
DragStatus: Axis lock status, True indicates the axis is movable, False
indicates it is locked
StatusCode: Result of function execution

Compatible robot software
version

Collaborative (Copper): v7.5.0.0+
Industrial (Bronze): Not supported

Method Name Motion.SetDragSet(DragStatus dragStatus)

Description
Sets the current robot axis lock status, which only applies to teaching
movements.

Request Parameters
dragStatus : DragStatus Axis lock status, default is all True: unlocked

state

Return Value StatusCode: Result of function execution

4.2.11 Getting the Robot Axis Lock Status

4.2.12 Setting the Robot Axis Lock Status

 disconnectCode != StatusCode.OK

 ? disconnectCode.GetDescription()

 : "Successfully disconnected."

);

 }

 return code;

 }

}

4.2 Robot Motion Control and Status | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 111 / 283

Method Name Motion.SetDragSet(DragStatus dragStatus)

Compatible robot software
version

Collaborative (Copper): v7.5.0.0+
Industrial (Bronze): Not supported

Method Name Motion.EnableDrag(bool dragState)

Description Enables or disables drag teaching for the robot.

Request Parameters
dragState : bool The drag state of the robot, true indicates entering drag

mode, false indicates exiting drag mode

Return Value StatusCode: Result of function execution

Compatible robot
software version

Collaborative (Copper): v7.5.0.0+
Industrial (Bronze): Not supported

Example Code

4.2.13 Enabling Drag Teaching for the Robot

Motion/DragControl.cs

using Agilebot.IR;

using Agilebot.IR.Motion;

using Agilebot.IR.Types;

public class DragControl

{

 public static StatusCode Run(

 string controllerIP,

 bool useLocalProxy = true

)

 {

 // [ZH] 初始化捷勃特机器人

 // [EN] Initialize the Agilebot robot

 Arm controller = new Arm(

 controllerIP,

 useLocalProxy

cs

4.2 Robot Motion Control and Status | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 112 / 283

);

 // [ZH] 连接捷勃特机器人

 // [EN] Connect to the Agilebot robot

 StatusCode code = controller.ConnectSync();

 Console.WriteLine(

 code != StatusCode.OK

 ? code.GetDescription()

 : "连接成功/Successfully connected."

);

 if (code != StatusCode.OK)

 {

 return code;

 }

 try

 {

 // [ZH] 获取当前机器人的轴锁定状态

 // [EN] Get current robot axis lock status

 DragStatus dragStatus;

 (dragStatus, code) =

 controller.Motion.GetDragSet();

 if (code == StatusCode.OK)

 {

 Console.WriteLine("获取轴锁定状态成功:");

 Console.WriteLine(

 $"X轴: {dragStatus.CartStatus.X}, Y轴: {dragStatus.CartStatus.

Y}, Z轴: {dragStatus.CartStatus.Z}"

);

 Console.WriteLine(

 $"连续拖动: {dragStatus.IsContinuousDrag}"

);

 }

 else

 {

 Console.WriteLine(

 $"获取轴锁定状态失败: {code.GetDescription()}"

);

 }

 // [ZH] 修改当前机器人的轴锁定状态

4.2 Robot Motion Control and Status | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 113 / 283

 // [EN] Modify current robot axis lock status

 if (code == StatusCode.OK)

 {

 dragStatus.CartStatus.X = false;

 dragStatus.IsContinuousDrag = true;

 code = controller.Motion.SetDragSet(

 dragStatus

);

 if (code == StatusCode.OK)

 {

 Console.WriteLine("设置轴锁定状态成功");

 }

 else

 {

 Console.WriteLine(

 $"设置轴锁定状态失败: {code.GetDescription()}"

);

 }

 }

 // [ZH] 启动拖动（注意：实际使用中需要谨慎）

 // [EN] Enable drag (Note: use with caution in practice)

 if (code == StatusCode.OK)

 {

 Console.WriteLine(

 "注意：启动拖动功能，请确保安全！"

);

 code = controller.Motion.EnableDrag(true);

 if (code == StatusCode.OK)

 {

 Console.WriteLine("启动拖动成功");

 // [ZH] 等待一段时间后停止拖动

 // [EN] Wait for a while then stop drag

 Console.WriteLine(

 "等待3秒后停止拖动..."

);

 Thread.Sleep(3000);

 code = controller.Motion.EnableDrag(

 false

);

4.2 Robot Motion Control and Status | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 114 / 283

 if (code == StatusCode.OK)

 {

 Console.WriteLine("停止拖动成功");

 }

 else

 {

 Console.WriteLine(

 $"停止拖动失败: {code.GetDescription()}"

);

 }

 }

 else

 {

 Console.WriteLine(

 $"启动拖动失败: {code.GetDescription()}"

);

 }

 }

 }

 catch (Exception ex)

 {

 Console.WriteLine(

 $"执行过程中发生异常/Exception occurred during execution: {ex.Messag

e}"

);

 code = StatusCode.OtherReason;

 }

 finally

 {

 // [ZH] 关闭连接

 // [EN] Close the connection

 StatusCode disconnectCode =

 controller.Disconnect();

 Console.WriteLine(

 disconnectCode != StatusCode.OK

 ? disconnectCode.GetDescription()

 : "Successfully disconnected."

);

 }

 return code;

4.2 Robot Motion Control and Status | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 115 / 283

Method Name Motion.EnterPositionControl()

Description
Enters real-time position control mode, allowing precise position
control of the robot.

Request Parameters None

Return Value StatusCode: Result of function execution

Note
After entering real-time control mode, control commands must be sent
via UDP.

Compatible robot software
version

Collaborative (Copper): v7.5.2.0+
Industrial (Bronze): Not supported

Method Name Motion.ExitPositionControl()

Description
Exits real-time position control mode, returning to the default robot
control state.

Request Parameters None

Return Value StatusCode: Result of function execution

Note
After exiting, the robot will no longer accept real-time control
commands.

Compatible robot software
version

Collaborative (Copper): v7.5.2.0+
Industrial (Bronze): Not supported

4.2.14 Entering Real-Time Position Control Mode

4.2.15 Exiting Real-Time Position Control Mode

 }

}

4.2 Robot Motion Control and Status | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 116 / 283

Method Name
Motion.SetUDPFeedbackParams(bool flag , string ip , int interval , int
feedbackType , List<int> DOList = null)

Description
Configures the subscription parameters for the robot to push data to a
specified IP address.

Request Parameters

flag : bool Whether to enable UDP data pushing;
ip : string IP address of the recipient;
interval : int Interval for sending data (unit: milliseconds);
feedbackType : int Feedback data format (0: XML format);
DOList : List<int> List of DO signals to be obtained (up to ten, optional)

Return Value StatusCode: Result of function execution

Note
The parameter settings are only effective when the UDP data pushing
function is enabled.

Compatible robot
software version

Collaborative (Copper): v7.5.2.0+
Industrial (Bronze): Not supported

Example Code

4.2.16 Setting Subscription Parameters

Motion/PositionControl.cs

using Agilebot.IR;

using Agilebot.IR.Motion;

using Agilebot.IR.Types;

public class PositionControl

{

 public static StatusCode Run(

 string controllerIP,

 bool useLocalProxy = true

)

 {

 // [ZH] 初始化捷勃特机器人

 // [EN] Initialize the Agilebot robot

 Arm controller = new Arm(

cs

4.2 Robot Motion Control and Status | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 117 / 283

 controllerIP,

 useLocalProxy

);

 // [ZH] 连接捷勃特机器人

 // [EN] Connect to the Agilebot robot

 StatusCode code = controller.ConnectSync();

 Console.WriteLine(

 code != StatusCode.OK

 ? code.GetDescription()

 : "连接成功/Successfully connected."

);

 if (code != StatusCode.OK)

 {

 return code;

 }

 try

 {

 // [ZH] 设置UDP反馈参数

 // [EN] Set UDP feedback parameters

 code = controller.Motion.SetUDPFeedbackParams(

 true,

 "192.168.1.1",

 10,

 0

);

 if (code == StatusCode.OK)

 {

 Console.WriteLine("设置UDP反馈参数成功");

 }

 else

 {

 Console.WriteLine(

 $"设置UDP反馈参数失败: {code.GetDescription()}"

);

 }

 // [ZH] 进入实时位置控制模式

 // [EN] Enter real-time position control mode

 code = controller.Motion.EnterPositionControl();

4.2 Robot Motion Control and Status | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 118 / 283

 if (code == StatusCode.OK)

 {

 Console.WriteLine(

 "进入实时位置控制模式成功"

);

 // [ZH] 在此可以插入发送UDP数据控制机器人的代码

 // [EN] Insert UDP data control code here

 Console.WriteLine(

 "注意：在实时位置控制模式下，需要通过UDP发送控制指令"

);

 Console.WriteLine("等待2秒...");

 Thread.Sleep(2000);

 // [ZH] 退出实时位置控制模式

 // [EN] Exit real-time position control mode

 code =

 controller.Motion.ExitPositionControl();

 if (code == StatusCode.OK)

 {

 Console.WriteLine(

 "退出实时位置控制模式成功"

);

 }

 else

 {

 Console.WriteLine(

 $"退出实时位置控制模式失败: {code.GetDescription()}"

);

 }

 }

 else

 {

 Console.WriteLine(

 $"进入实时位置控制模式失败: {code.GetDescription()}"

);

 }

 }

 catch (Exception ex)

 {

 Console.WriteLine(

 $"执行过程中发生异常/Exception occurred during execution: {ex.Messag

4.2 Robot Motion Control and Status | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 119 / 283

Name Field Description

RIst: Cartesian Position X
Value in the X direction in the tool coordinate
system, unit is millimeters

Y
Value in the Y direction in the tool coordinate
system, unit is millimeters

Z
Value in the Z direction in the tool coordinate
system, unit is millimeters

A
Rotation around the X axis in the tool coordinate
system, unit is degrees

B
Rotation around the Y axis in the tool coordinate
system, unit is degrees

C Rotation around the Z axis in the tool coordinate

Data Push Description

e}"

);

 code = StatusCode.OtherReason;

 }

 finally

 {

 // [ZH] 关闭连接

 // [EN] Close the connection

 StatusCode disconnectCode =

 controller.Disconnect();

 Console.WriteLine(

 disconnectCode != StatusCode.OK

 ? disconnectCode.GetDescription()

 : "Successfully disconnected."

);

 }

 return code;

 }

}

4.2 Robot Motion Control and Status | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 120 / 283

Name Field Description

system, unit is degrees

AIPos: Joint Position A1-A6 Values of the six joints, unit is degrees

EIPos: Additional Axis
Data

EIPos Additional axis data

WristBtnState: Wrist
Button State

Button State 1 = Button pressed, 0 = Button released

DragModel Drag button state

RecordJoint Teach record button state

PauseResume Pause/resume button state

Digout: DO Output Digout State of digital output (DO)

ProgramStatus: Program
Status

ProgId Program ID

Status

Interpreter execution status:
0 = INTERPRETER_IDLE
1 = INTERPRETER_EXECUTE
2 = INTERPRETER_PAUSED

Xpath
Program segment return value, format is program

name: line number

IPOC: Timestamp IPOC Timestamp

Method Name Motion.GetUserSoftLimit()

Description Gets the current soft limits of the robot.

Request Parameters None

Return Value List<List<double>>: Robot's soft limits, the first layer of the list represents each
axis, and the second layer represents the lower and upper limit values of each

4.2.17 Getting the Robot's Soft Limits

4.2 Robot Motion Control and Status | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 121 / 283

Method Name Motion.GetUserSoftLimit()

axis
StatusCode: Result of function execution

Compatible robot
software version

Collaborative (Copper): v7.5.0.0+
Industrial (Bronze): v7.5.0.0+

Method Name
Motion.SetPositionTrajectoryParams(int maxTimeoutCount , int timeout ,
double wristElbowThreshold , double shoulderThreshold)

Description Specifies the parameters related to UDP position control.

Request Parameters

maxTimeoutCount : Maximum number of timeouts;
timeout : Timeout period (i.e., send interval, default is 20ms);
wristElbowThreshold : Threshold for wrist/elbow approaching singularity;
shoulderThreshold : Threshold for approaching shoulder singularity;

Return Value StatusCode: Result of function execution

Compatible robot
software version

Collaborative (Copper): v7.5.0.0+
Industrial (Bronze): v7.5.0.0+

Method Name Motion.Payload.GetCurrentPayload()

Description Gets the currently active payload information.

Request Parameters None

Return Value
int: Index of the currently active payload
StatusCode: Result of function execution

4.2.18 Specifying UDP Position Control Parameters

4.2.19 Payload-Related Interfaces

4.2.19.1 Getting the Current Active Payload

4.2 Robot Motion Control and Status | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 122 / 283

Method Name Motion.Payload.GetCurrentPayload()

Compatible robot software version
Collaborative (Copper): v7.5.0.0+
Industrial (Bronze): v7.5.0.0+

Method Name Motion.Payload.GetPayloadById(int index)

Description Gets the corresponding payload.

Request Parameters index : Payload index

Return Value StatusCode: Result of function execution

Compatible robot software version
Collaborative (Copper): v7.5.0.0+
Industrial (Bronze): v7.5.0.0+

Method Name Motion.Payload.SetCurrentPayload(int index)

Description Activates the corresponding payload.

Request Parameters index : Payload index

Return Value StatusCode: Result of function execution

Compatible robot software version
Collaborative (Copper): v7.5.0.0+
Industrial (Bronze): v7.5.0.0+

Note The payload ID must exist in the current device.

Method Name Motion.Payload.GetAllPayloadInfo()

Description Gets detailed information of all payloads.

Request Parameters None

4.2.19.2 Getting the Corresponding Payload

4.2.19.3 Activating the Corresponding Payload

4.2.19.4 Getting All Payload Information

4.2 Robot Motion Control and Status | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 123 / 283

Method Name Motion.Payload.GetAllPayloadInfo()

Return Value
Dictionary<uint, string>: Returns a dictionary of payload
information
StatusCode: Result of function execution

Compatible robot software
version

Collaborative (Copper): v7.5.0.0+
Industrial (Bronze): v7.5.0.0+

Method Name Motion.Payload.AddPayload(PayloadInfo payload)

Description Adds a new payload.

Request Parameters payload : PayloadInfo Payload object

Return Value StatusCode: Result of function execution

Note
The new payload ID must not exist in the current device and must be
between 1 and 10.

Compatible robot software
version

Collaborative (Copper): v7.5.0.0+
Industrial (Bronze): v7.5.0.0+

Method Name Motion.Payload.DeletePayload(int index)

Description Deletes the payload with the specified index.

Request Parameters index : int Payload index

Return Value StatusCode: Result of function execution

Compatible robot
software version

Collaborative (Copper): v7.5.0.0+
Industrial (Bronze): v7.5.0.0+

Note
Note: The currently active payload cannot be deleted. If you want to delete the
active payload, please activate another payload first and then delete the current
one.

4.2.19.5 Adding a Payload

4.2.19.6 Deleting a Specified Payload

4.2 Robot Motion Control and Status | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 124 / 283

Method Name Motion.Payload.UpdatePayload(PayloadInfo payload)

Description Updates the information of the specified payload.

Request Parameters payload : PayloadInfo Payload object

Return Value StatusCode: Result of function execution

Note The payload ID must exist in the current device.

Compatible robot software version
Collaborative (Copper): v7.5.0.0+
Industrial (Bronze): v7.5.0.0+

Example Code

4.2.19.7 Updating a Specified Payload

Motion/PayloadControl.cs

using Agilebot.IR;

using Agilebot.IR.Motion;

public class PayloadControl

{

 public static StatusCode Run(

 string controllerIP,

 bool useLocalProxy = true

)

 {

 // [ZH] 初始化捷勃特机器人

 // [EN] Initialize the Agilebot robot

 Arm controller = new Arm(

 controllerIP,

 useLocalProxy

);

 // [ZH] 连接捷勃特机器人

 // [EN] Connect to the Agilebot robot

 StatusCode code = controller.ConnectSync();

 Console.WriteLine(

 code != StatusCode.OK

 ? code.GetDescription()

cs

4.2 Robot Motion Control and Status | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 125 / 283

 : "连接成功/Successfully connected."

);

 if (code != StatusCode.OK)

 {

 return code;

 }

 try

 {

 // [ZH] 获取负载列表

 // [EN] Get payload list

 Dictionary<int, string> payloadList;

 (payloadList, code) =

 controller.Motion.Payload.GetAllPayloadInfo();

 if (code == StatusCode.OK)

 {

 Console.WriteLine("获取负载列表成功:");

 foreach (var p in payloadList)

 {

 Console.WriteLine(

 $"负载ID: {p.Key}, 描述: {p.Value}"

);

 }

 }

 else

 {

 Console.WriteLine(

 $"获取负载列表失败: {code.GetDescription()}"

);

 }

 // [ZH] 获取当前激活的负载

 // [EN] Get current active payload

 int currentPayload;

 (currentPayload, code) =

 controller.Motion.Payload.GetCurrentPayload();

 if (code == StatusCode.OK)

 {

 Console.WriteLine(

 $"当前激活的负载ID: {currentPayload}"

);

4.2 Robot Motion Control and Status | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 126 / 283

 }

 else

 {

 Console.WriteLine(

 $"获取当前负载失败: {code.GetDescription()}"

);

 }

 // [ZH] 添加新负载

 // [EN] Add new payload

 PayloadInfo payload = new()

 {

 Id = 3,

 Comment = "测试负载",

 Weight = 1.0,

 MassCenter = new()

 {

 X = 1,

 Y = 2,

 Z = 3,

 },

 InertiaMoment = new()

 {

 LX = 10,

 LY = 20,

 LZ = 30,

 },

 };

 code = controller.Motion.Payload.AddPayload(

 payload

);

 if (code == StatusCode.OK)

 {

 Console.WriteLine("添加负载成功");

 }

 else

 {

 Console.WriteLine(

 $"添加负载失败: {code.GetDescription()}"

);

 }

4.2 Robot Motion Control and Status | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 127 / 283

 // [ZH] 设置当前激活的负载

 // [EN] Set current active payload

 if (code == StatusCode.OK)

 {

 code =

 controller.Motion.Payload.SetCurrentPayload(

 3

);

 if (code == StatusCode.OK)

 {

 Console.WriteLine("设置当前负载成功");

 }

 else

 {

 Console.WriteLine(

 $"设置当前负载失败: {code.GetDescription()}"

);

 }

 }

 }

 catch (Exception ex)

 {

 Console.WriteLine(

 $"执行过程中发生异常/Exception occurred during execution: {ex.Messag

e}"

);

 code = StatusCode.OtherReason;

 }

 finally

 {

 // [ZH] 关闭连接

 // [EN] Close the connection

 StatusCode disconnectCode =

 controller.Disconnect();

 Console.WriteLine(

 disconnectCode != StatusCode.OK

 ? disconnectCode.GetDescription()

 : "Successfully disconnected."

);

 }

4.2 Robot Motion Control and Status | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 128 / 283

Method Name Motion.Payload.CheckAxisThreeHorizontal()

Description Checks if Axis 3 is horizontal.

Request Parameters None

Return Value
double: The horizontal angle of Axis 3
StatusCode: Result of function execution

Compatible robot software
version

Collaborative (Copper): v7.5.2.0+
Industrial (Bronze): Not supported

Note
The horizontal angle must be between -1 and 1 to perform payload
identification.

Method Name Motion.Payload.GetPayloadIdentifyState()

Description Gets the state of payload identification.

Request Parameters None

Return Value
PayloadIdentifyState: Payload identification state
StatusCode: Result of function execution

Compatible robot software version
Collaborative (Copper): v7.5.2.0+
Industrial (Bronze): Not supported

4.2.19.8 Checking if Axis 3 is Horizontal

4.2.19.9 Getting the Payload Identification State

4.2.19.10 Starting Payload Identification

 return code;

 }

}

4.2 Robot Motion Control and Status | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 129 / 283

Method Name
Motion.Payload.StartPayloadIdentify(double weight , double
angle)

Description Starts payload identification.

Request Parameters
weight : double Payload weight (use -1 for unknown weight)
angle : double Allowed rotation angle of Axis 6 (30-90 degrees)

Return Value StatusCode: Result of function execution

Compatible robot software
version

Collaborative (Copper): v7.5.2.0+
Industrial (Bronze): Not supported

Note
You must enter the payload identification state before starting payload
identification.

Method Name Motion.Payload.PayloadIdentifyResult()

Description Gets the result of payload identification.

Request Parameters None

Return Value
PayloadInfo: Payload identification result
StatusCode: Result of function execution

Compatible robot software version
Collaborative (Copper): v7.5.2.0+
Industrial (Bronze): Not supported

Method Name
Motion.Payload.InterferenceCheckForPayloadIdentify(double weight ,
double angle)

Description
Starts interference check for payload identification to check for potential
collisions.

Request Parameters
weight : double Payload weight (use -1 for unknown weight)
angle : double Allowed rotation angle of Axis 6 (30-90 degrees)

Return Value StatusCode: Result of function execution

4.2.19.11 Getting the Payload Identification Result

4.2.19.12 Starting Interference Check for Payload Identification

4.2 Robot Motion Control and Status | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 130 / 283

Method Name
Motion.Payload.InterferenceCheckForPayloadIdentify(double weight ,
double angle)

Compatible robot
software version

Collaborative (Copper): v7.5.2.0+
Industrial (Bronze): Not supported

Method Name Motion.Payload.PayloadIdentifyStart()

Description Enters the payload identification state.

Request Parameters None

Return Value StatusCode: Result of function execution

Compatible robot software version
Collaborative (Copper): v7.5.2.0+
Industrial (Bronze): Not supported

Method Name Motion.Payload.PayloadIdentifyDone()

Description Exits the payload identification state.

Request Parameters None

Return Value StatusCode: Result of function execution

Compatible robot software version
Collaborative (Copper): v7.5.2.0+
Industrial (Bronze): Not supported

Method Name Motion.Payload.PayloadIdentify(double weight = -1, double angle = 90)

Description
Complete payload identification process, including all the interfaces mentioned
above. For general payload identification, this interface is sufficient.

Request Parameters
weight : double Payload weight (use -1 for unknown weight)
angle : double Allowed rotation angle of Axis 6 (30-90 degrees)

4.2.19.13 Entering Payload Identification State

4.2.19.14 Exiting Payload Identification State

4.2.19.15 Full Payload Identification Process

4.2 Robot Motion Control and Status | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 131 / 283

Method Name Motion.Payload.PayloadIdentify(double weight = -1, double angle = 90)

Return Value
PayloadInfo: Payload identification result
StatusCode: Result of function execution

Note

The returned payload can be added to the robot or saved to an existing
payload in the robot.
The full process steps are:
1. Enter payload identification state
2. Start payload identification
3. Get payload identification result
4. Exit payload identification state

Compatible robot
software version

Collaborative (Copper): v7.5.2.0+
Industrial (Bronze): Not supported

Example Code

Motion/PayloadIdentify.cs

using Agilebot.IR;

using Agilebot.IR.Motion;

using Agilebot.IR.Types;

public class PayloadIdentify

{

 public static StatusCode Run(

 string controllerIP,

 bool useLocalProxy = true

)

 {

 // [ZH] 初始化捷勃特机器人

 // [EN] Initialize the Agilebot robot

 Arm controller = new Arm(

 controllerIP,

 useLocalProxy

);

 // [ZH] 连接捷勃特机器人

 // [EN] Connect to the Agilebot robot

 StatusCode code = controller.ConnectSync();

cs

4.2 Robot Motion Control and Status | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 132 / 283

 Console.WriteLine(

 code != StatusCode.OK

 ? code.GetDescription()

 : "连接成功/Successfully connected."

);

 if (code != StatusCode.OK)

 {

 return code;

 }

 try

 {

 // [ZH] 获取机器人模式

 // [EN] Get robot mode

 (UserOpMode opMode, StatusCode opCode) =

 controller.GetOpMode();

 if (opCode == StatusCode.OK)

 {

 Console.WriteLine(

 $"当前机器人模式/Current robot mode: {opMode}"

);

 if (opMode != UserOpMode.AUTO)

 {

 Console.WriteLine(

 $"负载测定执行必须在机器人自动模式下/Payload identification ex

ecution must be in automatic mode"

);

 return StatusCode.OtherReason;

 }

 }

 else

 {

 Console.WriteLine(

 $"获取机器人模式失败/Failed to get robot mode: {opCode.GetDescri

ption()}"

);

 }

 // [ZH] 检测3轴是否水平

 // [EN] Check if axis 3 is horizontal

 double horizontalAngle;

4.2 Robot Motion Control and Status | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 133 / 283

 (horizontalAngle, code) =

 controller.Motion.Payload.CheckAxisThreeHorizontal();

 if (code == StatusCode.OK)

 {

 Console.WriteLine(

 $"3轴水平角度: {horizontalAngle}"

);

 if (Math.Abs(horizontalAngle) > 1)

 {

 Console.WriteLine(

 "警告：3轴水平角度超出范围(-1~1)，无法进行负载测定"

);

 return StatusCode.OtherReason;

 }

 }

 else

 {

 Console.WriteLine(

 $"检测3轴水平失败: {code.GetDescription()}"

);

 }

 // [ZH] 获取负载测定状态

 // [EN] Get payload identification state

 PayloadIdentifyState identifyState;

 (identifyState, code) =

 controller.Motion.Payload.GetPayloadIdentifyState();

 if (code == StatusCode.OK)

 {

 Console.WriteLine(

 $"负载测定状态: {identifyState}"

);

 }

 else

 {

 Console.WriteLine(

 $"获取负载测定状态失败: {code.GetDescription()}"

);

 }

 // [ZH] 执行完整的负载测定流程

 // [EN] Execute complete payload identification process

4.2 Robot Motion Control and Status | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 134 / 283

 PayloadInfo payload;

 (payload, code) =

 controller.Motion.Payload.PayloadIdentify(

 -1,

 90

);

 if (code == StatusCode.OK)

 {

 Console.WriteLine("负载测定成功:");

 Console.WriteLine(

 $"负载重量: {payload.Weight}"

);

 Console.WriteLine(

 $"质心位置: X={payload.MassCenter.X}, Y={payload.MassCenter.Y},

Z={payload.MassCenter.Z}"

);

 Console.WriteLine(

 $"惯性矩: LX={payload.InertiaMoment.LX}, LY={payload.InertiaMom

ent.LY}, LZ={payload.InertiaMoment.LZ}"

);

 // [ZH] 保存负载到机器人中

 // [EN] Save payload to robot

 payload.Id = 6;

 code = controller.Motion.Payload.AddPayload(

 payload

);

 if (code == StatusCode.OK)

 {

 Console.WriteLine(

 "保存负载到机器人成功"

);

 }

 else

 {

 Console.WriteLine(

 $"保存负载失败: {code.GetDescription()}"

);

 }

 }

 else

 {

4.2 Robot Motion Control and Status | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 135 / 283

 Console.WriteLine(

 $"负载测定失败: {code.GetDescription()}"

);

 }

 }

 catch (Exception ex)

 {

 Console.WriteLine(

 $"执行过程中发生异常/Exception occurred during execution: {ex.Messag

e}"

);

 code = StatusCode.OtherReason;

 }

 finally

 {

 // [ZH] 关闭连接

 // [EN] Close the connection

 StatusCode disconnectCode =

 controller.Disconnect();

 Console.WriteLine(

 disconnectCode != StatusCode.OK

 ? disconnectCode.GetDescription()

 : "Successfully disconnected."

);

 }

 return code;

 }

}

4.2 Robot Motion Control and Status | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 136 / 283

Method Name Execution.Start(string programName)

Description Starts execution of the specified program in the robot controller.

Request Parameters programName : string Name of the program to be executed

Return Value StatusCode: Program start operation execution result

Compatible robot software version
Collaborative (Copper): v7.5.0.0+
Industrial (Bronze): v7.5.0.0+

Method Name Execution.Stop(string programName = null)

Description
Stops the currently executing program or stops the robot's current motion
command.

Request Parameters
programName : string Name of the program to be stopped, default is null,

meaning stop the currently running program or motion command

Return Value StatusCode: Stop operation execution result

Compatible robot
software version

Collaborative (Copper): v7.5.0.0+
Industrial (Bronze): v7.5.0.0+

4.3 Robot Program Execution Class

4.3.1 Executing a Specified Program

4.3.2 Stopping the Currently Executing Program

4.3.3 Returning Details of All Running Programs

4.3 Robot Program Execution Class | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 137 / 283

Method Name Execution.AllRunningPrograms()

Description
Gets detailed information of all running programs, including program IDs
and program names.

Request Parameters None

Return Value
Dictionary<string, int>: List of running program IDs and program names
StatusCode: Get operation execution result

Compatible robot
software version

Collaborative (Copper): v7.5.0.0+
Industrial (Bronze): v7.5.0.0+

Method Name Execution.Pause(string programName = null)

Description Pauses the currently executing program or pauses the robot's current motion.

Request Parameters
programName : string Name of the program to be paused, when not passed,

defaults to controlling the currently running program or executing action

Return Value StatusCode: Pause operation execution result

Compatible robot
software version

Collaborative (Copper): v7.5.0.0+
Industrial (Bronze): v7.5.0.0+

Method Name Execution.Resume(string programName)

Description
Continues running a program in paused state or resumes the robot's paused
motion.

Request Parameters
programName : string Name of the program to be resumed, when not passed,

defaults to controlling the currently running program or executing action

Return Value StatusCode: Resume operation execution result

4.3.4 Pausing Program Execution

4.3.5 Resuming Program Execution

4.3 Robot Program Execution Class | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 138 / 283

Method Name Execution.Resume(string programName)

Compatible robot
software version

Collaborative (Copper): v7.5.0.0+
Industrial (Bronze): v7.5.0.0+

Example Code

Execution/ProgramExecution.cs

using Agilebot.IR;

using Agilebot.IR.Types;

public class ProgramExecution

{

 /// <summary>

 /// 测试程序执行完整流程功能

 /// 验证程序的启动、暂停、恢复和停止等完整操作流程

 /// </summary>

 public static StatusCode Run(

 string controllerIP,

 bool useLocalProxy = true

)

 {

 // [ZH] 初始化捷勃特机器人

 // [EN] Initialize the Agilebot robot

 Arm controller = new Arm(

 controllerIP,

 useLocalProxy

);

 // [ZH] 连接捷勃特机器人

 // [EN] Connect to the Agilebot robot

 StatusCode code = controller.ConnectSync();

 Console.WriteLine(

 code != StatusCode.OK

 ? code.GetDescription()

 : "连接成功/Successfully connected."

);

 if (code != StatusCode.OK)

 {

cs

4.3 Robot Program Execution Class | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 139 / 283

 return code;

 }

 try

 {

 Console.WriteLine(

 "开始程序执行完整流程/Starting Program Execution Complete Flow"

);

 // [ZH] 获取测试文件路径

 // [EN] Get test file path

 string file_user_program = GetTestFilePath(

 "test_prog.xml"

);

 // [ZH] 设置程序名称

 // [EN] Set program name

 string progName = "test_prog";

 // [ZH] 上传用户程序文件

 // [EN] Upload user program file

 code = controller.FileManager.Upload(

 file_user_program,

 FileType.UserProgram,

 true

);

 if (code == StatusCode.OK)

 {

 Console.WriteLine(

 $"用户程序文件上传成功/User Program File Upload Success: {progNa

me}"

);

 }

 else

 {

 Console.WriteLine(

 $"用户程序文件上传失败/User Program File Upload Failed: {code.Ge

tDescription()}"

);

 return code;

 }

4.3 Robot Program Execution Class | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 140 / 283

 // [ZH] 等待

 // [EN] Wait

 Thread.Sleep(3000);

 // [ZH] 启动程序

 // [EN] Start program

 code = controller.Execution.Start(progName);

 if (code == StatusCode.OK)

 {

 Console.WriteLine(

 $"程序启动成功/Program Started Successfully: {progName}"

);

 }

 else

 {

 Console.WriteLine(

 $"程序启动失败/Program Start Failed: {code.GetDescription()}"

);

 return code;

 }

 Thread.Sleep(2000);

 // [ZH] 获取所有正在运行的程序列表

 // [EN] Get all running programs list

 Dictionary<string, int> progList;

 (progList, code) =

 controller.Execution.AllRunningPrograms();

 if (code == StatusCode.OK)

 {

 Console.WriteLine(

 "获取运行程序列表成功/Get Running Programs List Success"

);

 Console.WriteLine(

 $"运行程序数量/Running Programs Count: {progList.Count}"

);

 foreach (var prog in progList)

 {

 Console.WriteLine(

 $" 程序/Program: {prog.Key}, 状态/Status: {prog.Value}"

);

 }

 }

4.3 Robot Program Execution Class | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 141 / 283

 else

 {

 Console.WriteLine(

 $"获取运行程序列表失败/Get Running Programs List Failed: {code.G

etDescription()}"

);

 return code;

 }

 Thread.Sleep(2000);

 // [ZH] 暂停程序

 // [EN] Pause program

 code = controller.Execution.Pause(progName);

 if (code == StatusCode.OK)

 {

 Console.WriteLine(

 $"程序暂停成功/Program Paused Successfully: {progName}"

);

 }

 else

 {

 Console.WriteLine(

 $"程序暂停失败/Program Pause Failed: {code.GetDescription()}"

);

 return code;

 }

 Thread.Sleep(2000);

 // [ZH] 恢复程序

 // [EN] Resume program

 code = controller.Execution.Resume(progName);

 if (code == StatusCode.OK)

 {

 Console.WriteLine(

 $"程序恢复成功/Program Resumed Successfully: {progName}"

);

 }

 else

 {

 Console.WriteLine(

 $"程序恢复失败/Program Resume Failed: {code.GetDescription()}"

);

4.3 Robot Program Execution Class | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 142 / 283

 return code;

 }

 Thread.Sleep(2000);

 // [ZH] 停止程序

 // [EN] Stop program

 code = controller.Execution.Stop(progName);

 if (code == StatusCode.OK)

 {

 Console.WriteLine(

 $"程序停止成功/Program Stopped Successfully: {progName}"

);

 }

 else

 {

 Console.WriteLine(

 $"程序停止失败/Program Stop Failed: {code.GetDescription()}"

);

 return code;

 }

 // [ZH] 删除用户程序文件

 // [EN] Delete user program file

 code = controller.FileManager.Delete(

 progName,

 FileType.UserProgram

);

 if (code == StatusCode.OK)

 {

 Console.WriteLine(

 $"用户程序文件删除成功/User Program File Delete Success: {progNa

me}"

);

 }

 else

 {

 Console.WriteLine(

 $"用户程序文件删除失败/User Program File Delete Failed: {code.Ge

tDescription()}"

);

 return code;

 }

4.3 Robot Program Execution Class | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 143 / 283

 Console.WriteLine(

 "程序执行完整流程结束/Program Execution Complete Flow Test Complete

d"

);

 }

 catch (Exception ex)

 {

 Console.WriteLine(

 $"执行过程中发生异常/Exception occurred during execution: {ex.Messag

e}"

);

 code = StatusCode.OtherReason;

 }

 finally

 {

 // [ZH] 关闭连接

 // [EN] Close the connection

 StatusCode disconnectCode =

 controller.Disconnect();

 if (disconnectCode != StatusCode.OK)

 {

 Console.WriteLine(

 disconnectCode.GetDescription()

);

 if (code == StatusCode.OK)

 code = disconnectCode;

 }

 }

 return code;

 }

 /// <summary>

 /// 获取test_files文件夹中文件的路径示例方法

 /// 展示如何获取当前程序目录下的test_files文件夹中的文件路径

 /// </summary>

 private static string GetTestFilePath(string fileName)

 {

 // [ZH] 获取当前程序集的目录

 // [EN] Get current assembly directory

 string? codeFilePath =

4.3 Robot Program Execution Class | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 144 / 283

4.3.6 Executing a BAS Script Program

 new System.Diagnostics.StackTrace(true)

 .GetFrame(0)

 ?.GetFileName();

 if (string.IsNullOrEmpty(codeFilePath))

 {

 throw new InvalidOperationException(

 "无法获取当前文件路径/Cannot get current file path"

);

 }

 string? codeDirectory = Path.GetDirectoryName(

 codeFilePath

);

 if (string.IsNullOrEmpty(codeDirectory))

 {

 throw new InvalidOperationException(

 "无法获取当前目录路径/Cannot get current directory path"

);

 }

 // [ZH] 构建test_files文件夹路径

 // [EN] Build test_files folder path

 string testFilesDirectory = Path.Combine(

 codeDirectory,

 "test_files"

);

 // [ZH] 构建文件完整路径

 // [EN] Build complete file path

 string filePath = Path.Combine(

 testFilesDirectory,

 fileName

);

 return filePath;

 }

}

4.3 Robot Program Execution Class | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 145 / 283

Method Name Execution.ExecuteBasScript(BasScript script)

Description Executes a user-defined BAS script program.

Request Parameters script : BasScript User-defined BAS script program

Return Value StatusCode: Script execution operation execution result

Note
BAS script program pause, resume, and stop methods are the same as
regular programs.

Compatible robot software
version

Collaborative (Copper): v7.5.2.0+
Industrial (Bronze): Not supported
Industrial Robot: v7.6.0.0+

Example Code

Execution/ExecuteBasScript.cs

using Agilebot.IR;

using Agilebot.IR.BasScript;

using Agilebot.IR.Execution;

using Agilebot.IR.Types;

public class ExecuteBasScript

{

 /// <summary>

 /// 测试执行Bas脚本功能

 /// 验证能否成功执行包含条件判断、运动控制和赋值操作的Bas脚本

 /// </summary>

 public static StatusCode Run(

 string controllerIP,

 bool useLocalProxy = true

)

 {

 // [ZH] 初始化捷勃特机器人

 // [EN] Initialize the Agilebot robot

 Arm controller = new Arm(

 controllerIP,

 useLocalProxy

);

cs

4.3 Robot Program Execution Class | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 146 / 283

 // [ZH] 连接捷勃特机器人

 // [EN] Connect to the Agilebot robot

 StatusCode code = controller.ConnectSync();

 Console.WriteLine(

 code != StatusCode.OK

 ? code.GetDescription()

 : "连接成功/Successfully connected."

);

 if (code != StatusCode.OK)

 {

 return code;

 }

 try

 {

 Console.WriteLine(

 "开始执行Bas脚本程序/Starting Execute BasScript"

);

 // [ZH] 创建BAS脚本程序

 // [EN] Create BAS script program

 BasScript script = new BasScript("test_bas");

 // [ZH] 添加条件判断到脚本

 // [EN] Add conditional statement to script

 code = script.Logical.IF(

 RegisterType.R,

 1,

 OtherType.VALUE,

 0

);

 if (code != StatusCode.OK)

 {

 Console.WriteLine(

 $"添加条件判断失败/Add Conditional Statement Failed: {code.GetDe

scription()}"

);

 return code;

 }

 // [ZH] 添加运动控制到脚本

4.3 Robot Program Execution Class | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 147 / 283

 // [EN] Add motion control to script

 BasScript.ExtraParam param =

 new BasScript.ExtraParam();

 param.Acceleration(80);

 code = script.Motion.MoveJoint(

 MovePoseType.PR,

 1,

 SpeedType.VALUE,

 30,

 SmoothType.SD,

 10,

 extraParam: param

);

 if (code != StatusCode.OK)

 {

 Console.WriteLine(

 $"添加运动控制失败/Add Motion Control Failed: {code.GetDescripti

on()}"

);

 return code;

 }

 // [ZH] 添加赋值操作到脚本

 // [EN] Add assignment operation to script

 code = script.AssignValue(AssignType.R, 1, 99);

 if (code != StatusCode.OK)

 {

 Console.WriteLine(

 $"添加赋值操作失败/Add Assignment Operation Failed: {code.GetDes

cription()}"

);

 return code;

 }

 // [ZH] 结束条件判断

 // [EN] End conditional statement

 code = script.Logical.END_IF();

 if (code != StatusCode.OK)

 {

 Console.WriteLine(

 $"结束条件判断失败/End Conditional Statement Failed: {code.GetDe

scription()}"

4.3 Robot Program Execution Class | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 148 / 283

);

 return code;

 }

 // [ZH] 等待上一个测试结束

 // [EN] Wait for previous test to end

 Thread.Sleep(1000);

 // [ZH] 执行BAS脚本程序

 // [EN] Execute BAS script program

 code = controller.Execution.ExecuteBasScript(

 script

);

 if (code == StatusCode.OK)

 {

 Console.WriteLine(

 "BAS脚本执行成功/Execute BasScript Success"

);

 Console.WriteLine(

 "脚本包含条件判断、运动控制和赋值操作/Script includes conditional

statements, motion control and assignment operations"

);

 }

 else

 {

 Console.WriteLine(

 $"BAS脚本执行失败/Execute BasScript Failed: {code.GetDescription

()}"

);

 }

 Console.WriteLine(

 "执行Bas脚本测试完成/Execute BasScript Test Completed"

);

 }

 catch (Exception ex)

 {

 Console.WriteLine(

 $"执行过程中发生异常/Exception occurred during execution: {ex.Messag

e}"

);

 code = StatusCode.OtherReason;

4.3 Robot Program Execution Class | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 149 / 283

 }

 finally

 {

 // [ZH] 关闭连接

 // [EN] Close the connection

 StatusCode disconnectCode =

 controller.Disconnect();

 if (disconnectCode != StatusCode.OK)

 {

 Console.WriteLine(

 disconnectCode.GetDescription()

);

 if (code == StatusCode.OK)

 code = disconnectCode;

 }

 }

 return code;

 }

}

4.3 Robot Program Execution Class | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 150 / 283

Method Name
ProgramPoses.Read(string programName , int index , FileType ft =
FileType.UserProgram)

Description Reads the pose data at the specified index in the specified program.

Request Parameters
programName : string Specified program name
index : int Specified pose index
ft : FileType File type

Return Value
ProgramPose Robot pose data in the program
StatusCode: Read operation execution result

Compatible robot software
version

Collaborative (Copper): v7.5.0.0+
Industrial (Bronze): v7.5.0.0+

Example Code

4.4 Program Information Read/Write Operations

4.4.1 Reading the Value of a Specified Pose in a Program

ProgramPoses/ReadProgramPose.cs

using Agilebot.IR;

using Agilebot.IR.ProgramPoses;

using Agilebot.IR.Types;

public class ReadProgramPose

{

 public static StatusCode Run(

 string controllerIP,

 bool useLocalProxy = true

)

 {

 // [ZH] 初始化捷勃特机器人

 // [EN] Initialize the Agilebot robot

 Arm controller = new Arm(

cs

4.4 Program Information Read/Write Operations | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 151 / 283

 controllerIP,

 useLocalProxy

);

 // [ZH] 连接捷勃特机器人

 // [EN] Connect to the Agilebot robot

 StatusCode code = controller.ConnectSync();

 Console.WriteLine(

 code != StatusCode.OK

 ? code.GetDescription()

 : "连接成功/Successfully connected."

);

 if (code != StatusCode.OK)

 {

 return code;

 }

 try

 {

 // [ZH] 设置程序名称和位姿点索引

 // [EN] Set program name and pose index

 string progName = "test_prog";

 int index = 1;

 // [ZH] 读取指定程序中指定位姿点值

 // [EN] Read specified pose value in specified program

 ProgramPose pose;

 (pose, code) = controller.ProgramPoses.Read(

 progName,

 index

);

 if (code == StatusCode.OK)

 {

 Console.WriteLine(

 "读取程序位姿点成功/Read Program Pose Success"

);

 Console.WriteLine(

 $"位姿信息/Pose Info: {pose}"

);

 }

 else

4.4 Program Information Read/Write Operations | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 152 / 283

4.4.2 Wirting the Value of a Specified Pose in a Program

 {

 Console.WriteLine(

 $"读取程序位姿点失败/Read Program Pose Failed: {code.GetDescript

ion()}"

);

 }

 }

 catch (Exception ex)

 {

 Console.WriteLine(

 $"执行过程中发生异常/Exception occurred during execution: {ex.Messag

e}"

);

 code = StatusCode.OtherReason;

 }

 finally

 {

 // [ZH] 关闭连接

 // [EN] Close the connection

 StatusCode disconnectCode =

 controller.Disconnect();

 if (disconnectCode != StatusCode.OK)

 {

 Console.WriteLine(

 disconnectCode.GetDescription()

);

 if (code == StatusCode.OK)

 code = disconnectCode;

 }

 }

 return code;

 }

}

4.4 Program Information Read/Write Operations | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 153 / 283

Method Name
ProgramPoses.Write(string programName , int index , ProgramPose
value , FileType ft = FileType.UserProgram)

Description Modifies the pose data at the specified index in the specified program.

Request Parameters

programName : string Specified program name
index : int Specified pose index
value : ProgramPose Robot pose data in the program
ft : FileType File type

Return Value StatusCode: Write operation execution result

Compatible robot
software version

Collaborative (Copper): v7.5.0.0+
Industrial (Bronze): v7.5.0.0+

Example Code

ProgramPoses/WriteProgramPose.cs

using Agilebot.IR;

using Agilebot.IR.ProgramPoses;

using Agilebot.IR.Types;

public class WriteProgramPose

{

 public static StatusCode Run(

 string controllerIP,

 bool useLocalProxy = true

)

 {

 // [ZH] 初始化捷勃特机器人

 // [EN] Initialize the Agilebot robot

 Arm controller = new Arm(

 controllerIP,

 useLocalProxy

);

 // [ZH] 连接捷勃特机器人

 // [EN] Connect to the Agilebot robot

 StatusCode code = controller.ConnectSync();

 Console.WriteLine(

cs

4.4 Program Information Read/Write Operations | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 154 / 283

 code != StatusCode.OK

 ? code.GetDescription()

 : "连接成功/Successfully connected."

);

 if (code != StatusCode.OK)

 {

 return code;

 }

 try

 {

 // [ZH] 设置程序名称和位姿点索引

 // [EN] Set program name and pose index

 string progName = "test_prog";

 int index = 2;

 // [ZH] 生成随机位姿点

 // [EN] Generate random pose

 ProgramPose rndPose =

 ProgramPose.GenerateRandomPose(index);

 // [ZH] 修改指定程序中指定位姿点值

 // [EN] Write specified pose value in specified program

 code = controller.ProgramPoses.Write(

 progName,

 index,

 rndPose

);

 if (code == StatusCode.OK)

 {

 Console.WriteLine(

 "写入程序位姿点成功/Write Program Pose Success"

);

 }

 else

 {

 Console.WriteLine(

 $"写入程序位姿点失败/Write Program Pose Failed: {code.GetDescrip

tion()}"

);

 }

4.4 Program Information Read/Write Operations | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 155 / 283

Method Name
ProgramPoses.Add(string programName , int index , ProgramPose
value , FileType ft = FileType.UserProgram)

Description Adds pose data at the specified index position in the specified program.

Request Parameters programName : string Specified program name
index : int Specified pose index

4.4.3 Adding a Pose to a Specified Program

 }

 catch (Exception ex)

 {

 Console.WriteLine(

 $"执行过程中发生异常/Exception occurred during execution: {ex.Messag

e}"

);

 code = StatusCode.OtherReason;

 }

 finally

 {

 // [ZH] 关闭连接

 // [EN] Close the connection

 StatusCode disconnectCode =

 controller.Disconnect();

 if (disconnectCode != StatusCode.OK)

 {

 Console.WriteLine(

 disconnectCode.GetDescription()

);

 if (code == StatusCode.OK)

 code = disconnectCode;

 }

 }

 return code;

 }

}

4.4 Program Information Read/Write Operations | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 156 / 283

Method Name
ProgramPoses.Add(string programName , int index , ProgramPose
value , FileType ft = FileType.UserProgram)

value : ProgramPose Robot pose data in the program
ft : FileType File type

Return Value StatusCode: Add operation execution result

Compatible robot
software version

Collaborative (Copper): v7.5.0.0+
Industrial (Bronze): v7.5.0.0+

Example Code

ProgramPoses/AddProgramPose.cs

using Agilebot.IR;

using Agilebot.IR.ProgramPoses;

using Agilebot.IR.Types;

public class AddProgramPose

{

 public static StatusCode Run(

 string controllerIP,

 bool useLocalProxy = true

)

 {

 // [ZH] 初始化捷勃特机器人

 // [EN] Initialize the Agilebot robot

 Arm controller = new Arm(

 controllerIP,

 useLocalProxy

);

 // [ZH] 连接捷勃特机器人

 // [EN] Connect to the Agilebot robot

 StatusCode code = controller.ConnectSync();

 Console.WriteLine(

 code != StatusCode.OK

 ? code.GetDescription()

 : "连接成功/Successfully connected."

);

cs

4.4 Program Information Read/Write Operations | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 157 / 283

 if (code != StatusCode.OK)

 {

 return code;

 }

 try

 {

 // [ZH] 设置程序名称和位姿点索引

 // [EN] Set program name and pose index

 string progName = "test_prog";

 int index = 3;

 // [ZH] 生成随机位姿点

 // [EN] Generate random pose

 ProgramPose rndPose =

 ProgramPose.GenerateRandomPose(index);

 // [ZH] 添加指定程序中指定位姿点

 // [EN] Add specified pose in specified program

 code = controller.ProgramPoses.Add(

 progName,

 index,

 rndPose

);

 if (code == StatusCode.OK)

 {

 Console.WriteLine(

 "添加程序位姿点成功/Add Program Pose Success"

);

 }

 else

 {

 Console.WriteLine(

 $"添加程序位姿点失败/Add Program Pose Failed: {code.GetDescripti

on()}"

);

 }

 }

 catch (Exception ex)

 {

 Console.WriteLine(

 $"执行过程中发生异常/Exception occurred during execution: {ex.Messag

4.4 Program Information Read/Write Operations | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 158 / 283

Method Name
ProgramPoses.Delete(string programName , int index , FileType ft =
FileType.UserProgram)

Description Deletes the pose at the specified index in the specified program.

Request Parameters
programName : string Specified program name
index : int Specified pose index
ft : FileType File type

Return Value StatusCode: Delete operation execution result

Compatible robot
software version

Collaborative (Copper): v7.5.0.0+
Industrial (Bronze): v7.5.0.0+

4.4.4 Deleting a Specified Pose from a Program

e}"

);

 code = StatusCode.OtherReason;

 }

 finally

 {

 // [ZH] 关闭连接

 // [EN] Close the connection

 StatusCode disconnectCode =

 controller.Disconnect();

 if (disconnectCode != StatusCode.OK)

 {

 Console.WriteLine(

 disconnectCode.GetDescription()

);

 if (code == StatusCode.OK)

 code = disconnectCode;

 }

 }

 return code;

 }

}

4.4 Program Information Read/Write Operations | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 159 / 283

Example Code

ProgramPoses/DeleteProgramPose.cs

using Agilebot.IR;

using Agilebot.IR.ProgramPoses;

using Agilebot.IR.Types;

public class DeleteProgramPose

{

 public static StatusCode Run(

 string controllerIP,

 bool useLocalProxy = true

)

 {

 // [ZH] 初始化捷勃特机器人

 // [EN] Initialize the Agilebot robot

 Arm controller = new Arm(

 controllerIP,

 useLocalProxy

);

 // [ZH] 连接捷勃特机器人

 // [EN] Connect to the Agilebot robot

 StatusCode code = controller.ConnectSync();

 Console.WriteLine(

 code != StatusCode.OK

 ? code.GetDescription()

 : "连接成功/Successfully connected."

);

 if (code != StatusCode.OK)

 {

 return code;

 }

 try

 {

 // [ZH] 设置程序名称和位姿点索引

 // [EN] Set program name and pose index

 string progName = "test_prog";

cs

4.4 Program Information Read/Write Operations | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 160 / 283

 int index = 3;

 // [ZH] 删除指定程序中指定位姿点

 // [EN] Delete specified pose in specified program

 code = controller.ProgramPoses.Delete(

 progName,

 index

);

 if (code == StatusCode.OK)

 {

 Console.WriteLine(

 "删除程序位姿点成功/Delete Program Pose Success"

);

 }

 else

 {

 Console.WriteLine(

 $"删除程序位姿点失败/Delete Program Pose Failed: {code.GetDescri

ption()}"

);

 }

 }

 catch (Exception ex)

 {

 Console.WriteLine(

 $"执行过程中发生异常/Exception occurred during execution: {ex.Messag

e}"

);

 code = StatusCode.OtherReason;

 }

 finally

 {

 // [ZH] 关闭连接

 // [EN] Close the connection

 StatusCode disconnectCode =

 controller.Disconnect();

 if (disconnectCode != StatusCode.OK)

 {

 Console.WriteLine(

 disconnectCode.GetDescription()

);

 if (code == StatusCode.OK)

4.4 Program Information Read/Write Operations | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 161 / 283

Method Name
ProgramPoses.ReadAllPoses(string programName , FileType ft =
FileType.UserProgram)

Description Gets all pose information from the specified program.

Request Parameters
programName : string Specified program name
ft : FileType File type

Return Value
List<ProgramPose>: Pose data list
StatusCode: Get operation execution result

Compatible robot software
version

Collaborative (Copper): v7.5.0.0+
Industrial (Bronze): v7.5.0.0+

Example Code

4.4.5 Retrieving All Poses from a Specified Program

ProgramPoses/ReadAllProgramPoses.cs

 code = disconnectCode;

 }

 }

 return code;

 }

}

using Agilebot.IR;

using Agilebot.IR.ProgramPoses;

using Agilebot.IR.Types;

public class ReadAllProgramPoses

{

 public static StatusCode Run(

 string controllerIP,

 bool useLocalProxy = true

)

cs

4.4 Program Information Read/Write Operations | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 162 / 283

 {

 // [ZH] 初始化捷勃特机器人

 // [EN] Initialize the Agilebot robot

 Arm controller = new Arm(

 controllerIP,

 useLocalProxy

);

 // [ZH] 连接捷勃特机器人

 // [EN] Connect to the Agilebot robot

 StatusCode code = controller.ConnectSync();

 Console.WriteLine(

 code != StatusCode.OK

 ? code.GetDescription()

 : "连接成功/Successfully connected."

);

 if (code != StatusCode.OK)

 {

 return code;

 }

 try

 {

 // [ZH] 设置程序名称

 // [EN] Set program name

 string progName = "test_prog";

 // [ZH] 读取指定程序中所有位姿点

 // [EN] Read all poses in specified program

 List<ProgramPose> poses;

 (poses, code) =

 controller.ProgramPoses.ReadAllPoses(

 progName

);

 if (code == StatusCode.OK)

 {

 Console.WriteLine(

 "读取所有程序位姿点成功/Read All Program Poses Success"

);

 Console.WriteLine(

 $"位姿点数量/Number of poses: {poses.Count}"

4.4 Program Information Read/Write Operations | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 163 / 283

);

 for (int i = 0; i < poses.Count; i++)

 {

 Console.WriteLine(

 $"位姿点 {i + 1}/Pose {i + 1}: {poses[i]}"

);

 }

 }

 else

 {

 Console.WriteLine(

 $"读取所有程序位姿点失败/Read All Program Poses Failed: {code.Get

Description()}"

);

 }

 }

 catch (Exception ex)

 {

 Console.WriteLine(

 $"执行过程中发生异常/Exception occurred during execution: {ex.Messag

e}"

);

 code = StatusCode.OtherReason;

 }

 finally

 {

 // [ZH] 关闭连接

 // [EN] Close the connection

 StatusCode disconnectCode =

 controller.Disconnect();

 if (disconnectCode != StatusCode.OK)

 {

 Console.WriteLine(

 disconnectCode.GetDescription()

);

 if (code == StatusCode.OK)

 code = disconnectCode;

 }

 }

 return code;

4.4 Program Information Read/Write Operations | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 164 / 283

Method Name ProgramPoses.ConvertPose(ProgramPose pose, PoseType toType)

Description
Converts robot poses in the program between joint coordinates and
Cartesian space coordinates.

Request Parameters
pose : ProgramPose Robot pose data in the program
toType : PoseType Desired coordinate type after conversion

Return Value
ProgramPose: Converted pose data
StatusCode: Conversion operation execution result

Compatible robot
software version

Collaborative (Copper): v7.5.0.0+
Industrial (Bronze): v7.5.0.0+

Example Code

4.4.6 Converting Pose Types in Robot Programs

ProgramPoses/ConvertProgramPose.cs

 }

}

using Agilebot.IR;

using Agilebot.IR.ProgramPoses;

using Agilebot.IR.Types;

public class ConvertProgramPose

{

 public static StatusCode Run(

 string controllerIP,

 bool useLocalProxy = true

)

 {

 // [ZH] 初始化捷勃特机器人

 // [EN] Initialize the Agilebot robot

 Arm controller = new Arm(

 controllerIP,

cs

4.4 Program Information Read/Write Operations | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 165 / 283

 useLocalProxy

);

 // [ZH] 连接捷勃特机器人

 // [EN] Connect to the Agilebot robot

 StatusCode code = controller.ConnectSync();

 Console.WriteLine(

 code != StatusCode.OK

 ? code.GetDescription()

 : "连接成功/Successfully connected."

);

 if (code != StatusCode.OK)

 {

 return code;

 }

 try

 {

 // [ZH] 设置程序名称和位姿点索引

 // [EN] Set program name and pose index

 string progName = "test_prog";

 int cartIndex = 1;

 // [ZH] 先读取一个位姿点

 // [EN] First read a pose

 ProgramPose cartPose;

 (cartPose, code) = controller.ProgramPoses.Read(

 progName,

 cartIndex

);

 if (code != StatusCode.OK)

 {

 Console.WriteLine(

 $"读取位姿点失败/Read Pose Failed: {code.GetDescription()}"

);

 return code;

 }

 // [ZH] 转换位姿点类型（从笛卡尔坐标转换为关节坐标）

 // [EN] Convert pose type (from Cartesian to Joint coordinates)

 ProgramPose pose;

4.4 Program Information Read/Write Operations | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 166 / 283

 (pose, code) =

 controller.ProgramPoses.ConvertPose(

 cartPose,

 PoseType.Joint

);

 if (code == StatusCode.OK)

 {

 Console.WriteLine(

 "转换程序位姿点成功/Convert Program Pose Success"

);

 Console.WriteLine(

 $"原始位姿/Original Pose: {cartPose}"

);

 Console.WriteLine(

 $"转换后位姿/Converted Pose: {pose}"

);

 }

 else

 {

 Console.WriteLine(

 $"转换程序位姿点失败/Convert Program Pose Failed: {code.GetDescr

iption()}"

);

 }

 }

 catch (Exception ex)

 {

 Console.WriteLine(

 $"执行过程中发生异常/Exception occurred during execution: {ex.Messag

e}"

);

 code = StatusCode.OtherReason;

 }

 finally

 {

 // [ZH] 关闭连接

 // [EN] Close the connection

 StatusCode disconnectCode =

 controller.Disconnect();

 if (disconnectCode != StatusCode.OK)

 {

 Console.WriteLine(

4.4 Program Information Read/Write Operations | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 167 / 283

 disconnectCode.GetDescription()

);

 if (code == StatusCode.OK)

 code = disconnectCode;

 }

 }

 return code;

 }

}

4.4 Program Information Read/Write Operations | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 168 / 283

Method Name Signals.Read(SignalType type , int index)

Description Reads the IO signal value of the specified type and port.

Request Parameters
type : SignalType IO signal type to read
index : int IO port index to read, starting from 1

Return Value
int: IO signal value, 1 represents high level, 0 represents low level
StatusCode: Read operation execution result

Compatible robot software version
Collaborative (Copper): v7.5.0.0+
Industrial (Bronze): v7.5.0.0+

Example Code

4.5 IO Signals

4.5.1 Reading the Value of a Specified Type and Port IO

Signals/ReadSignal.cs

using Agilebot.IR;

using Agilebot.IR.Types;

public class ReadSignal

{

 public static StatusCode Run(

 string controllerIP,

 bool useLocalProxy = true

)

 {

 // [ZH] 初始化捷勃特机器人

 // [EN] Initialize the Agilebot robot

 Arm controller = new Arm(

 controllerIP,

 useLocalProxy

);

cs

4.5 IO Signals | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 169 / 283

 // [ZH] 连接捷勃特机器人

 // [EN] Connect to the Agilebot robot

 StatusCode code = controller.ConnectSync();

 Console.WriteLine(

 code != StatusCode.OK

 ? code.GetDescription()

 : "连接成功/Successfully connected."

);

 if (code != StatusCode.OK)

 {

 return code;

 }

 try

 {

 // [ZH] 设置IO信号类型和索引

 // [EN] Set IO signal type and index

 SignalType type = SignalType.DI;

 int index = 1;

 // [ZH] 读取指定类型指定端口IO的值

 // [EN] Read specified type and port IO value

 int res;

 (res, code) = controller.Signals.Read(

 type,

 index

);

 if (code == StatusCode.OK)

 {

 Console.WriteLine(

 "读取IO信号成功/Read Signal Success"

);

 Console.WriteLine(

 $"{type}：{index} 的值为/has value {res}"

);

 Console.WriteLine(

 $"信号状态/Signal Status: {(res == 1 ? "高电平/High Level" : "低

电平/Low Level")}"

);

 }

4.5 IO Signals | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 170 / 283

4.5.2 Writing the Value of a Specified Type and Port IO

 else

 {

 Console.WriteLine(

 $"读取IO信号失败/Read Signal Failed: {code.GetDescription()}"

);

 }

 }

 catch (Exception ex)

 {

 Console.WriteLine(

 $"执行过程中发生异常/Exception occurred during execution: {ex.Messag

e}"

);

 code = StatusCode.OtherReason;

 }

 finally

 {

 // [ZH] 关闭连接

 // [EN] Close the connection

 StatusCode disconnectCode =

 controller.Disconnect();

 if (disconnectCode != StatusCode.OK)

 {

 Console.WriteLine(

 disconnectCode.GetDescription()

);

 if (code == StatusCode.OK)

 code = disconnectCode;

 }

 }

 return code;

 }

}

4.5 IO Signals | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 171 / 283

Method Name Signals.Write(SignalType type , int index , double value)

Description Writes the IO signal value of the specified type and port.

Request Parameters

type : SignalType IO signal type to write
index : int IO port index to write, starting from 1
value : double Signal value to write, 1 represents high level, 0

represents low level

Return Value StatusCode: Write operation execution result

Compatible robot software
version

Collaborative (Copper): v7.5.0.0+
Industrial (Bronze): v7.5.0.0+

Note UI/UO signals can only be read, not written

Example Code

Signals/WriteSignal.cs

using Agilebot.IR;

using Agilebot.IR.Types;

public class WriteSignal

{

 public static StatusCode Run(

 string controllerIP,

 bool useLocalProxy = true

)

 {

 // [ZH] 初始化捷勃特机器人

 // [EN] Initialize the Agilebot robot

 Arm controller = new Arm(

 controllerIP,

 useLocalProxy

);

 // [ZH] 连接捷勃特机器人

 // [EN] Connect to the Agilebot robot

 StatusCode code = controller.ConnectSync();

 Console.WriteLine(

 code != StatusCode.OK

cs

4.5 IO Signals | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 172 / 283

 ? code.GetDescription()

 : "连接成功/Successfully connected."

);

 if (code != StatusCode.OK)

 {

 return code;

 }

 try

 {

 // [ZH] 设置IO信号类型、索引和值

 // [EN] Set IO signal type, index and value

 SignalType type = SignalType.DO;

 int index = 1;

 int value = 1;

 // [ZH] 写指定类型指定端口IO的值

 // [EN] Write specified type and port IO value

 code = controller.Signals.Write(

 type,

 index,

 value

);

 if (code == StatusCode.OK)

 {

 Console.WriteLine(

 "写入IO信号成功/Write Signal Success"

);

 Console.WriteLine(

 $"{type}：{index} 设置为/set to value {value}"

);

 Console.WriteLine(

 $"信号状态/Signal Status: {(value == 1 ? "高电平/High Level" :

"低电平/Low Level")}"

);

 }

 else

 {

 Console.WriteLine(

 $"写入IO信号失败/Write Signal Failed: {code.GetDescription()}"

);

4.5 IO Signals | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 173 / 283

Method Name Signals.MultiWrite(SignalType type , List<int> ioData)

Description Batch write multiple DO ports with a flattened list of port/value pairs.

Request Parameters type : SignalType DO only
ioData : List<int> like [port1, state1, port2, state2, ...] , length must be

4.5.3 Batch Write DO Signals

 }

 }

 catch (Exception ex)

 {

 Console.WriteLine(

 $"执行过程中发生异常/Exception occurred during execution: {ex.Messag

e}"

);

 code = StatusCode.OtherReason;

 }

 finally

 {

 // [ZH] 关闭连接

 // [EN] Close the connection

 StatusCode disconnectCode =

 controller.Disconnect();

 if (disconnectCode != StatusCode.OK)

 {

 Console.WriteLine(

 disconnectCode.GetDescription()

);

 if (code == StatusCode.OK)

 code = disconnectCode;

 }

 }

 return code;

 }

}

4.5 IO Signals | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 174 / 283

Method Name Signals.MultiWrite(SignalType type , List<int> ioData)

even

Return Value StatusCode: write result

Compatible robot software
version

Collaborative (Copper): v7.5.0.0+
Industrial (Bronze): v7.5.0.0+

Note
Only DO supports batch write; UI/UO are read-only, DI/RI support
single-point read only

Example Code

using Agilebot.IR;

using Agilebot.IR.Types;

public class Test

{

 public static async Task Main()

 {

 string controllerIP = "10.27.1.254";

 Arm controller = new Arm(controllerIP);

 StatusCode code = await controller.Connect();

 Console.WriteLine(code != StatusCode.OK ? code.GetDescription() : "Successf

ully connected.");

 // Batch write DO1=1, DO2=0

 code = controller.Signals.MultiWrite(SignalType.DO, new List<int> { 1, 1,

2, 0 });

 Console.WriteLine(code != StatusCode.OK ? code.GetDescription() : "MultiWri

te Success");

 code = controller.Disconnect();

 Console.WriteLine(code != StatusCode.OK ? code.GetDescription() : "Successf

ully disconnected.");

 }

}

cs

4.5 IO Signals | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 175 / 283

Method Name Signals.MultiRead(SignalType type , List<int> indexes)

Description
Batch read multiple DO ports; returned values align with the input
order.

Request Parameters
type : SignalType DO only
indexes : List<int> ports to read, at least one index required

Return Value List<int> values (ordered as input) plus StatusCode

Compatible robot software
version

Collaborative (Copper): v7.5.0.0+
Industrial (Bronze): v7.5.0.0+

Note
Only DO supports batch read; UI/UO are read-only, DI/RI support
single-point read only

Example Code

4.5.4 Batch Read DO Signals

using Agilebot.IR;

using Agilebot.IR.Types;

public class Test

{

 public static async Task Main()

 {

 string controllerIP = "10.27.1.254";

 Arm controller = new Arm(controllerIP);

 StatusCode code = await controller.Connect();

 Console.WriteLine(code != StatusCode.OK ? code.GetDescription() : "Successf

ully connected.");

 // Batch read DO1, DO2

 (List<int> values, StatusCode readCode) = controller.Signals.MultiRead(Sign

alType.DO, new List<int> { 1, 2 });

 if (readCode == StatusCode.OK)

 {

 Console.WriteLine($"MultiRead Success: DO1={values[0]}, DO2={values

[1]}");

 }

cs

4.5 IO Signals | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 176 / 283

 code = controller.Disconnect();

 Console.WriteLine(code != StatusCode.OK ? code.GetDescription() : "Successf

ully disconnected.");

 }

}

4.5 IO Signals | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 177 / 283

Method Name Registers.Read_R(int index)

Description Reads the value of an R numeric register.

Request Parameters index : int R register number to read

Return Value
double: R register numeric value
StatusCode: Read operation execution result

Compatible robot software version
Collaborative (Copper): v7.6.0.1+
Industrial (Bronze): v7.6.0.0+

Method Name Registers.Write_R(int index , double value)

Description Writes the value of an R numeric register.

Request Parameters
index : int R register number to write
value : double R register numeric value to write

Return Value StatusCode: Write operation execution result

Compatible robot software version
Collaborative (Copper): v7.6.0.1+
Industrial (Bronze): v7.6.0.0+

4.6 Register Information

4.6.1 R Numeric Register Operations

4.6.1.1 Reading the Value of an R Register

4.6.1.2 Writing the Value of an R Register

4.6.1.3 Deleting an R Register

4.6 Register Information | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 178 / 283

Method Name Registers.Delete_R(int index)

Description Deletes the specified R numeric register.

Request Parameters index : int R register number to delete

Return Value StatusCode: Delete operation execution result

Compatible robot software version
Collaborative (Copper): v7.5.0.0+
Industrial (Bronze): v7.5.0.0+

Example Code

Registers/RRegisterOperations.cs

using Agilebot.IR;

using Agilebot.IR.Types;

public class RRegisterOperations

{

 public static StatusCode Run(

 string controllerIP,

 bool useLocalProxy = true

)

 {

 // [ZH] 初始化捷勃特机器人

 // [EN] Initialize the Agilebot robot

 Arm controller = new Arm(

 controllerIP,

 useLocalProxy

);

 // [ZH] 连接捷勃特机器人

 // [EN] Connect to the Agilebot robot

 StatusCode code = controller.ConnectSync();

 Console.WriteLine(

 code != StatusCode.OK

 ? code.GetDescription()

 : "连接成功/Successfully connected."

);

cs

4.6 Register Information | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 179 / 283

 if (code != StatusCode.OK)

 {

 return code;

 }

 try

 {

 // [ZH] 设置寄存器索引和值

 // [EN] Set register index and value

 int index = 1;

 double value = 9.9;

 // [ZH] 写入R寄存器

 // [EN] Write R register

 code = controller.Registers.Write_R(

 index,

 value

);

 if (code == StatusCode.OK)

 {

 Console.WriteLine(

 "写入R寄存器成功/Write R Register Success"

);

 }

 else

 {

 Console.WriteLine(

 $"写入R寄存器失败/Write R Register Failed: {code.GetDescription

()}"

);

 }

 // [ZH] 读取R寄存器

 // [EN] Read R register

 double readValue;

 (readValue, code) = controller.Registers.Read_R(

 index

);

 if (code == StatusCode.OK)

 {

 Console.WriteLine(

 $"读取R寄存器成功/Read R Register Success: 值/Value = {readValu

4.6 Register Information | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 180 / 283

e}"

);

 }

 else

 {

 Console.WriteLine(

 $"读取R寄存器失败/Read R Register Failed: {code.GetDescription

()}"

);

 }

 // [ZH] 删除R寄存器

 // [EN] Delete R register

 code = controller.Registers.Delete_R(index);

 if (code == StatusCode.OK)

 {

 Console.WriteLine(

 "删除R寄存器成功/Delete R Register Success"

);

 }

 else

 {

 Console.WriteLine(

 $"删除R寄存器失败/Delete R Register Failed: {code.GetDescription

()}"

);

 }

 }

 catch (Exception ex)

 {

 Console.WriteLine(

 $"执行过程中发生异常/Exception occurred during execution: {ex.Messag

e}"

);

 code = StatusCode.OtherReason;

 }

 finally

 {

 // [ZH] 关闭连接

 // [EN] Close the connection

 StatusCode disconnectCode =

 controller.Disconnect();

4.6 Register Information | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 181 / 283

Method Name Registers.Read_MR(int index)

Description Reads the value of an MR motion register.

Request Parameters index : int MR register number to read

Return Value
int: MR register numeric value
StatusCode: Read operation execution result

Compatible robot software version
Collaborative (Copper): v7.6.0.1+
Industrial (Bronze): v7.6.0.0+

Method Name Registers.Write_MR(int index , int value)

Description Writes the value of an MR motion register.

Request Parameters
index : int MR register number to write
value : int MR register numeric value to write

4.6.2 MR Motion Register Operations

4.6.2.1 Reading the Value of an MR Register

4.6.2.2 Writing the Value of an MR Register

 if (disconnectCode != StatusCode.OK)

 {

 Console.WriteLine(

 disconnectCode.GetDescription()

);

 if (code == StatusCode.OK)

 code = disconnectCode;

 }

 }

 return code;

 }

}

4.6 Register Information | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 182 / 283

Method Name Registers.Write_MR(int index , int value)

Return Value StatusCode: Write operation execution result

Compatible robot software version
Collaborative (Copper): v7.6.0.1+
Industrial (Bronze): v7.6.0.0+

Method Name Registers.Delete_MR(int index)

Description Deletes the specified MR motion register.

Request Parameters index : int MR register number to delete

Return Value StatusCode: Delete operation execution result

Compatible robot software version
Collaborative (Copper): v7.5.0.0+
Industrial (Bronze): v7.5.0.0+

Example Code

4.6.2.3 Deleting an MR Register

Registers/MRRegisterOperations.cs

using Agilebot.IR;

using Agilebot.IR.Types;

public class MRRegisterOperations

{

 public static StatusCode Run(

 string controllerIP,

 bool useLocalProxy = true

)

 {

 // [ZH] 初始化捷勃特机器人

 // [EN] Initialize the Agilebot robot

 Arm controller = new Arm(

 controllerIP,

 useLocalProxy

);

cs

4.6 Register Information | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 183 / 283

 // [ZH] 连接捷勃特机器人

 // [EN] Connect to the Agilebot robot

 StatusCode code = controller.ConnectSync();

 Console.WriteLine(

 code != StatusCode.OK

 ? code.GetDescription()

 : "连接成功/Successfully connected."

);

 if (code != StatusCode.OK)

 {

 return code;

 }

 try

 {

 // [ZH] 设置寄存器索引和值

 // [EN] Set register index and value

 int index = 1;

 int value = 9;

 // [ZH] 写入MR寄存器

 // [EN] Write MR register

 code = controller.Registers.Write_MR(

 index,

 value

);

 if (code == StatusCode.OK)

 {

 Console.WriteLine(

 "写入MR寄存器成功/Write MR Register Success"

);

 }

 else

 {

 Console.WriteLine(

 $"写入MR寄存器失败/Write MR Register Failed: {code.GetDescriptio

n()}"

);

 }

 // [ZH] 读取MR寄存器

4.6 Register Information | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 184 / 283

 // [EN] Read MR register

 int readValue;

 (readValue, code) =

 controller.Registers.Read_MR(index);

 if (code == StatusCode.OK)

 {

 Console.WriteLine(

 $"读取MR寄存器成功/Read MR Register Success: 值/Value = {readVal

ue}"

);

 }

 else

 {

 Console.WriteLine(

 $"读取MR寄存器失败/Read MR Register Failed: {code.GetDescription

()}"

);

 }

 // [ZH] 删除MR寄存器

 // [EN] Delete MR register

 code = controller.Registers.Delete_MR(index);

 if (code == StatusCode.OK)

 {

 Console.WriteLine(

 "删除MR寄存器成功/Delete MR Register Success"

);

 }

 else

 {

 Console.WriteLine(

 $"删除MR寄存器失败/Delete MR Register Failed: {code.GetDescripti

on()}"

);

 }

 }

 catch (Exception ex)

 {

 Console.WriteLine(

 $"执行过程中发生异常/Exception occurred during execution: {ex.Messag

e}"

);

4.6 Register Information | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 185 / 283

Method Name Registers.Read_SR(int index)

Description Reads the value of an SR string register.

Request Parameters index : int SR register number to read

Return Value
string: SR register string value
StatusCode: Read operation execution result

Compatible robot software version
Collaborative (Copper): v7.6.0.1+
Industrial (Bronze): v7.6.0.0+

4.6.3 SR String Register Operations

4.6.3.1 Reading the Value of an SR Register

 code = StatusCode.OtherReason;

 }

 finally

 {

 // [ZH] 关闭连接

 // [EN] Close the connection

 StatusCode disconnectCode =

 controller.Disconnect();

 if (disconnectCode != StatusCode.OK)

 {

 Console.WriteLine(

 disconnectCode.GetDescription()

);

 if (code == StatusCode.OK)

 code = disconnectCode;

 }

 }

 return code;

 }

}

4.6 Register Information | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 186 / 283

Method Name Registers.Write_SR(int index , string value)

Description Writes the value of an SR string register.

Request Parameters
index : int SR register number to write
value : string SR register string value to write

Return Value StatusCode: Write operation execution result

Compatible robot software version
Collaborative (Copper): v7.6.0.1+
Industrial (Bronze): v7.6.0.0+

Method Name Registers.Delete_SR(int index)

Description Deletes the specified SR string register.

Request Parameters index : int SR register number to delete

Return Value StatusCode: Delete operation execution result

Compatible robot software version
Collaborative (Copper): v7.5.0.0+
Industrial (Bronze): v7.5.0.0+

Example Code

4.6.3.2 Writing the Value of an SR Register

4.6.3.3 Deleting an SR Register

Registers/SRRegisterOperations.cs

using Agilebot.IR;

using Agilebot.IR.Types;

public class SRRegisterOperations

{

 public static StatusCode Run(

 string controllerIP,

 bool useLocalProxy = true

)

 {

cs

4.6 Register Information | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 187 / 283

 // [ZH] 初始化捷勃特机器人

 // [EN] Initialize the Agilebot robot

 Arm controller = new Arm(

 controllerIP,

 useLocalProxy

);

 // [ZH] 连接捷勃特机器人

 // [EN] Connect to the Agilebot robot

 StatusCode code = controller.ConnectSync();

 Console.WriteLine(

 code != StatusCode.OK

 ? code.GetDescription()

 : "连接成功/Successfully connected."

);

 if (code != StatusCode.OK)

 {

 return code;

 }

 try

 {

 // [ZH] 设置寄存器索引和值

 // [EN] Set register index and value

 int index = 1;

 string value = "test";

 // [ZH] 写入SR寄存器

 // [EN] Write SR register

 code = controller.Registers.Write_SR(

 index,

 value

);

 if (code == StatusCode.OK)

 {

 Console.WriteLine(

 "写入SR寄存器成功/Write SR Register Success"

);

 }

 else

 {

4.6 Register Information | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 188 / 283

 Console.WriteLine(

 $"写入SR寄存器失败/Write SR Register Failed: {code.GetDescriptio

n()}"

);

 }

 // [ZH] 读取SR寄存器

 // [EN] Read SR register

 string readValue;

 (readValue, code) =

 controller.Registers.Read_SR(index);

 if (code == StatusCode.OK)

 {

 Console.WriteLine(

 $"读取SR寄存器成功/Read SR Register Success: 值/Value = {readVal

ue}"

);

 }

 else

 {

 Console.WriteLine(

 $"读取SR寄存器失败/Read SR Register Failed: {code.GetDescription

()}"

);

 }

 // [ZH] 删除SR寄存器

 // [EN] Delete SR register

 code = controller.Registers.Delete_SR(index);

 if (code == StatusCode.OK)

 {

 Console.WriteLine(

 "删除SR寄存器成功/Delete SR Register Success"

);

 }

 else

 {

 Console.WriteLine(

 $"删除SR寄存器失败/Delete SR Register Failed: {code.GetDescripti

on()}"

);

 }

4.6 Register Information | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 189 / 283

Method Name Registers.Read_PR(int index)

Description Reads the value of a PR pose register.

Request Parameters index : int PR register number to read

4.6.4 PR Pose Register Operations

4.6.4.1 Reading the Value of a PR Register

 }

 catch (Exception ex)

 {

 Console.WriteLine(

 $"执行过程中发生异常/Exception occurred during execution: {ex.Messag

e}"

);

 code = StatusCode.OtherReason;

 }

 finally

 {

 // [ZH] 关闭连接

 // [EN] Close the connection

 StatusCode disconnectCode =

 controller.Disconnect();

 if (disconnectCode != StatusCode.OK)

 {

 Console.WriteLine(

 disconnectCode.GetDescription()

);

 if (code == StatusCode.OK)

 code = disconnectCode;

 }

 }

 return code;

 }

}

4.6 Register Information | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 190 / 283

Method Name Registers.Read_PR(int index)

Return Value
PoseRegister: PR register pose data
StatusCode: Read operation execution result

Compatible robot software version
Collaborative (Copper): v7.6.0.1+
Industrial (Bronze): v7.6.0.0+

Method Name Registers.Write_PR(int index , PoseRegister value)

Description Writes the value of a PR pose register.

Request Parameters
index : int PR register number to write
value : PoseRegister PR register pose data to write

Return Value StatusCode: Write operation execution result

Compatible robot software version
Collaborative (Copper): v7.6.0.1+
Industrial (Bronze): v7.6.0.0+

Method Name Registers.Delete_PR(int index)

Description Deletes the specified PR pose register.

Request Parameters index : int PR register number to delete

Return Value StatusCode: Delete operation execution result

Compatible robot software version
Collaborative (Copper): v7.5.0.0+
Industrial (Bronze): v7.5.0.0+

Example Code

4.6.4.2 Writing the Value of a PR Register

4.6.4.3 Deleting a PR Register

Registers/PRRegisterOperations.cs

using Agilebot.IR;

using Agilebot.IR.Registers;

cs

4.6 Register Information | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 191 / 283

using Agilebot.IR.Types;

public class PRRegisterOperations

{

 public static StatusCode Run(

 string controllerIP,

 bool useLocalProxy = true

)

 {

 // [ZH] 初始化捷勃特机器人

 // [EN] Initialize the Agilebot robot

 Arm controller = new Arm(

 controllerIP,

 useLocalProxy

);

 // [ZH] 连接捷勃特机器人

 // [EN] Connect to the Agilebot robot

 StatusCode code = controller.ConnectSync();

 Console.WriteLine(

 code != StatusCode.OK

 ? code.GetDescription()

 : "连接成功/Successfully connected."

);

 if (code != StatusCode.OK)

 {

 return code;

 }

 try

 {

 // [ZH] 设置寄存器索引

 // [EN] Set register index

 int index = 1;

 // [ZH] 生成位姿寄存器

 // [EN] Generate pose register

 var pose = new PoseRegister

 {

 Id = 1,

 Name = "Test",

4.6 Register Information | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 192 / 283

 Comment = "Test",

 PoseRegisterData = new PoseRegisterData

 {

 Pt = PoseType.Joint,

 Joint = new Joint

 {

 J1 = 6.6,

 J2 = 6.6,

 J3 = 6.6,

 J4 = 6.6,

 J5 = 6.6,

 J6 = 6.6,

 },

 CartData = null,

 },

 };

 // [ZH] 写入PR寄存器

 // [EN] Write PR register

 code = controller.Registers.Write_PR(pose);

 if (code == StatusCode.OK)

 {

 Console.WriteLine(

 "写入PR寄存器成功/Write PR Register Success"

);

 }

 else

 {

 Console.WriteLine(

 $"写入PR寄存器失败/Write PR Register Failed: {code.GetDescriptio

n()}"

);

 }

 // [ZH] 读取PR寄存器

 // [EN] Read PR register

 PoseRegister readValue;

 (readValue, code) =

 controller.Registers.Read_PR(index);

 if (code == StatusCode.OK)

 {

 Console.WriteLine(

4.6 Register Information | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 193 / 283

 $"读取PR寄存器成功/Read PR Register Success: ID = {readValue.I

d}"

);

 }

 else

 {

 Console.WriteLine(

 $"读取PR寄存器失败/Read PR Register Failed: {code.GetDescription

()}"

);

 }

 // [ZH] 删除PR寄存器

 // [EN] Delete PR register

 code = controller.Registers.Delete_PR(index);

 if (code == StatusCode.OK)

 {

 Console.WriteLine(

 "删除PR寄存器成功/Delete PR Register Success"

);

 }

 else

 {

 Console.WriteLine(

 $"删除PR寄存器失败/Delete PR Register Failed: {code.GetDescripti

on()}"

);

 }

 }

 catch (Exception ex)

 {

 Console.WriteLine(

 $"执行过程中发生异常/Exception occurred during execution: {ex.Messag

e}"

);

 code = StatusCode.OtherReason;

 }

 finally

 {

 // [ZH] 关闭连接

 // [EN] Close the connection

 StatusCode disconnectCode =

4.6 Register Information | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 194 / 283

Method Name Registers.Read_MH(int index)

Description Gets the value of an MH register.

Request Parameters index : int Register number to get

Return Value
Register information
StatusCode: Function execution result

Compatible robot software version
Collaborative (Copper): v7.6.0.0+
Industrial (Bronze): v7.6.0.0+

Method Name Registers.Read_MI(int index)

Description Gets the value of an MI register.

4.6.5 Modbus Registers (MH Holding Registers, MI Input
Registers)

4.6.5.1 Reading the Value of an MH Register

4.6.5.2 Reading the Value of an MI Register

 controller.Disconnect();

 if (disconnectCode != StatusCode.OK)

 {

 Console.WriteLine(

 disconnectCode.GetDescription()

);

 if (code == StatusCode.OK)

 code = disconnectCode;

 }

 }

 return code;

 }

}

4.6 Register Information | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 195 / 283

Method Name Registers.Read_MI(int index)

Request Parameters index : int Register number to get

Return Value
Register information
StatusCode: Function execution result

Compatible robot software version
Collaborative (Copper): v7.6.0.0+
Industrial (Bronze): v7.6.0.0+

Method Name Registers.Write_MH(int index , int value)

Description Updates the value of an MH register.

Request Parameters
index : int Register number
value : int Register information to update

Return Value StatusCode: Function execution result

Compatible robot software version
Collaborative (Copper): v7.6.0.0+
Industrial (Bronze): v7.6.0.0+

Method Name Registers.Write_MI(int index , int value)

Description Updates the value of an MI register.

Request Parameters
index : int Register number
value : int Register information to update

Return Value StatusCode: Function execution result

Compatible robot software version
Collaborative (Copper): v7.6.0.0+
Industrial (Bronze): v7.6.0.0+

Example Code

4.6.5.3 Writing the Value of an MH Register

4.6.5.4 Writing the Value of an MI Register

Registers/ModbusRegisterOperations.cs

4.6 Register Information | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 196 / 283

using Agilebot.IR;

using Agilebot.IR.Types;

public class ModbusRegisterOperations

{

 public static StatusCode Run(

 string controllerIP,

 bool useLocalProxy = true

)

 {

 // [ZH] 初始化捷勃特机器人

 // [EN] Initialize the Agilebot robot

 Arm controller = new Arm(

 controllerIP,

 useLocalProxy

);

 // [ZH] 连接捷勃特机器人

 // [EN] Connect to the Agilebot robot

 StatusCode code = controller.ConnectSync();

 Console.WriteLine(

 code != StatusCode.OK

 ? code.GetDescription()

 : "连接成功/Successfully connected."

);

 if (code != StatusCode.OK)

 {

 return code;

 }

 try

 {

 // [ZH] 设置寄存器索引和值

 // [EN] Set register index and value

 int index = 1;

 int writeValue = 8;

 // [ZH] 写入MH保持寄存器

 // [EN] Write MH holding register

 code = controller.Registers.Write_MH(

cs

4.6 Register Information | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 197 / 283

 index,

 writeValue

);

 if (code == StatusCode.OK)

 {

 Console.WriteLine(

 "写入MH保持寄存器成功/Write MH Holding Register Success"

);

 }

 else

 {

 Console.WriteLine(

 $"写入MH保持寄存器失败/Write MH Holding Register Failed: {code.G

etDescription()}"

);

 }

 // [ZH] 写入MI输入寄存器

 // [EN] Write MI input register

 code = controller.Registers.Write_MI(

 index,

 writeValue + 1

);

 if (code == StatusCode.OK)

 {

 Console.WriteLine(

 "写入MI输入寄存器成功/Write MI Input Register Success"

);

 }

 else

 {

 Console.WriteLine(

 $"写入MI输入寄存器失败/Write MI Input Register Failed: {code.Get

Description()}"

);

 }

 // [ZH] 读取MH保持寄存器

 // [EN] Read MH holding register

 int mhValue;

 (mhValue, code) = controller.Registers.Read_MH(

 index

4.6 Register Information | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 198 / 283

);

 if (code == StatusCode.OK)

 {

 Console.WriteLine(

 $"读取MH保持寄存器成功/Read MH Holding Register Success: 值/Valu

e = {mhValue}"

);

 }

 else

 {

 Console.WriteLine(

 $"读取MH保持寄存器失败/Read MH Holding Register Failed: {code.Ge

tDescription()}"

);

 }

 // [ZH] 读取MI输入寄存器

 // [EN] Read MI input register

 int miValue;

 (miValue, code) = controller.Registers.Read_MI(

 index

);

 if (code == StatusCode.OK)

 {

 Console.WriteLine(

 $"读取MI输入寄存器成功/Read MI Input Register Success: 值/Value

= {miValue}"

);

 }

 else

 {

 Console.WriteLine(

 $"读取MI输入寄存器失败/Read MI Input Register Failed: {code.GetD

escription()}"

);

 }

 }

 catch (Exception ex)

 {

 Console.WriteLine(

 $"执行过程中发生异常/Exception occurred during execution: {ex.Messag

e}"

4.6 Register Information | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 199 / 283

);

 code = StatusCode.OtherReason;

 }

 finally

 {

 // [ZH] 关闭连接

 // [EN] Close the connection

 StatusCode disconnectCode =

 controller.Disconnect();

 if (disconnectCode != StatusCode.OK)

 {

 Console.WriteLine(

 disconnectCode.GetDescription()

);

 if (code == StatusCode.OK)

 code = disconnectCode;

 }

 }

 return code;

 }

}

4.6 Register Information | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 200 / 283

Method Name Trajectory.SetOffLineTrajectoryFile(string path)

Description Sets the offline trajectory file to be executed.

Request
Parameters

path : string Offline trajectory file path, such as example file A.trajectory
A.trajectory trajectory file format is a text file, described as follows:
- Line 1: 6 represents 6 axes, 0.001 represents 1ms interval between two points,
8093 represents a total of 8093 trajectory points
- Line 2: Represents the initial positions of the 6 axes
- Lines 3-8095: Represent trajectory points, including positions, velocities,
accelerations, torque feedforward, do ports, and values of do ports for the 6 axes
- do_port represents the used do port (range 1-24)
- do_port is -1, indicating no IO signal will be triggered at this position
- do_port is 1, do_state is 1, indicating do1 port will trigger ON signal at this
position
- do_port is 1, do_state is 0, indicating do1 port will trigger OFF signal at this
position
Users upload the offline file to the robot controller root directory using
FileManager.upload, then execute the trajectory using instructions 4.7.2 and 4.7.3

Return Value StatusCode: Set operation execution result

Compatible robot
software version

Collaborative (Copper): v7.5.0.0+
Industrial (Bronze): v7.5.0.0+

Method Name Trajectory.PrepareOfflineTrajectory()

Description
Moves the robot to the start point of the offline trajectory at a safe
speed.

4.7 Trajectory Control

4.7.1 Setting the Offline Trajectory File

4.7.2 Moving the Robot to the Start Point of the Offline Trajectory

4.7 Trajectory Control | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 201 / 283

Method Name Trajectory.PrepareOfflineTrajectory()

Request Parameters None

Return Value StatusCode: Prepare operation execution result

Compatible robot software
version

Collaborative (Copper): v7.5.0.0+
Industrial (Bronze): v7.5.0.0+

Method Name Trajectory.ExecuteOfflineTrajectory()

Description Starts the execution of the offline trajectory file.

Request Parameters None

Return Value StatusCode: Execute operation execution result

Compatible robot software version
Collaborative (Copper): v7.5.0.0+
Industrial (Bronze): v7.5.0.0+

Method Trajectory.TransformCsvToTrajectory(string fileName)

Description
Converts a trajectory CSV file into the trajectory format and saves it to the
controller's trajectory file directory.

Request Parameter fileName : string – name of the CSV trajectory file.

Return Value
string: path of the converted trajectory file.
StatusCode: result of the conversion operation.

Compatible Robot
Software Versions

Collaborative (Copper): v7.5.0.0+
Industrial (Bronze): v7.5.0.0+

4.7.3 Starting Execution of the Offline Trajectory File

4.7.4 Convert CSV Trajectory File to Trajectory Format

4.7 Trajectory Control | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 202 / 283

Method Trajectory.CheckTransformStatus(string fileName)

Description Queries the working status of the TransformCsvToTrajectory process.

Request Parameter
fileName : string – result returned by the TransformCsvToTrajectory

interface.

Return Value
TransformState: conversion state.
StatusCode: result of the query operation.

Compatible Robot Software
Versions

Collaborative (Copper): v7.5.0.0+
Industrial (Bronze): v7.5.0.0+

Example Code

4.7.5 Query Trajectory Conversion Status

Trajectory/OfflineTrajectory.cs

using System.IO;

using Agilebot.IR;

using Agilebot.IR.Trajectory;

using Agilebot.IR.Types;

public class OfflineTrajectory

{

 public static StatusCode Run(

 string controllerIP,

 bool useLocalProxy = true

)

 {

 // [ZH] 初始化捷勃特机器人

 // [EN] Initialize the Agilebot robot

 Arm controller = new Arm(

 controllerIP,

 useLocalProxy

);

 // [ZH] 连接捷勃特机器人

 // [EN] Connect to the Agilebot robot

cs

4.7 Trajectory Control | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 203 / 283

 StatusCode code = controller.ConnectSync();

 Console.WriteLine(

 code != StatusCode.OK

 ? code.GetDescription()

 : "连接成功/Successfully connected."

);

 if (code != StatusCode.OK)

 {

 return code;

 }

 try

 {

 // [ZH] 获取机器人模式

 // [EN] Get robot mode

 (UserOpMode opMode, StatusCode opCode) =

 controller.GetOpMode();

 if (opCode == StatusCode.OK)

 {

 Console.WriteLine(

 $"当前机器人模式/Current robot mode: {opMode}"

);

 if (opMode != UserOpMode.AUTO)

 {

 Console.WriteLine(

 $"离线轨迹执行必须在机器人自动模式下/Offline trajectory execut

ion must be in automatic mode"

);

 return StatusCode.OtherReason;

 }

 }

 else

 {

 Console.WriteLine(

 $"获取机器人模式失败/Failed to get robot mode: {opCode.GetDescri

ption()}"

);

 }

 // [ZH] 添加程序文件到机器人中

 // [EN] Add program file to robot

4.7 Trajectory Control | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 204 / 283

 string file_user_program = GetTestFilePath(

 "test.csv"

);

 StatusCode ret_code =

 controller.FileManager.Upload(

 file_user_program,

 FileType.TmpFile,

 true

);

 if (ret_code != StatusCode.OK)

 {

 Console.WriteLine(

 $"上传文件失败/Upload file failed: {ret_code.GetDescription()}"

);

 return ret_code;

 }

 Console.WriteLine(

 "文件上传成功/File upload success"

);

 // [ZH] 测试CSV转换为轨迹文件功能

 // [EN] Test CSV to trajectory file conversion functionality

 string csvFilename = "test.csv";

 (

 string trajFileName,

 StatusCode transformCode

) =

 controller.Trajectory.TransformCsvToTrajectory(

 csvFilename

);

 if (transformCode != StatusCode.OK)

 {

 Console.WriteLine(

 $"CSV转换失败/CSV conversion failed: {transformCode.GetDescript

ion()}"

);

 return transformCode;

 }

 Console.WriteLine(

 $"CSV转换成功/CSV conversion success, trajectory file: {trajFileNam

e}"

4.7 Trajectory Control | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 205 / 283

);

 // [ZH] 检查转换状态

 // [EN] Check conversion status

 var startTime = System.DateTime.Now;

 TransformState state;

 StatusCode statusCode;

 do

 {

 (state, statusCode) =

 controller.Trajectory.CheckTransformStatus(

 System.IO.Path.GetFileName(

 trajFileName

)

);

 if (statusCode != StatusCode.OK)

 {

 Console.WriteLine(

 $"检查转换状态失败/Check transform status failed: {statusCod

e.GetDescription()}"

);

 return statusCode;

 }

 Console.WriteLine(

 $"转换状态/Transform state: {state}"

);

 Thread.Sleep(2000); // 等待2秒

 if (

 System.DateTime.Now - startTime

 > System.TimeSpan.FromSeconds(60)

)

 {

 Console.WriteLine(

 "转换状态检查超时/Transform status check timeout"

);

 break;

 }

 } while (

 state != TransformState.TRANSFORM_SUCCESS

 && state != TransformState.TRANSFORM_FAILED

4.7 Trajectory Control | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 206 / 283

);

 if (state == TransformState.TRANSFORM_FAILED)

 {

 Console.WriteLine(

 "CSV转换失败/CSV conversion failed"

);

 return StatusCode.OtherReason;

 }

 // [ZH] 转换任务成功并进行了结果查询后 服务端不会继续保存转换任务的状态

 // [EN] After the conversion task is successful and the result is queri

ed, the server will not continue to save the conversion task status

 (

 TransformState finalState,

 StatusCode finalCode

) = controller.Trajectory.CheckTransformStatus(

 System.IO.Path.GetFileName(trajFileName)

);

 if (finalCode != StatusCode.OK)

 {

 Console.WriteLine(

 $"最终状态检查失败/Final status check failed: {finalCode.GetDesc

ription()}"

);

 return finalCode;

 }

 Console.WriteLine(

 $"最终转换状态/Final transform state: {finalState}"

);

 // [ZH] 设置轨迹文件

 // [EN] Set trajectory file

 code =

 controller.Trajectory.SetOffLineTrajectoryFile(

 "test_torque.trajectory"

);

 if (code != StatusCode.OK)

 {

 Console.WriteLine(

 $"设置轨迹文件失败/Set trajectory file failed: {code.GetDescript

ion()}"

4.7 Trajectory Control | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 207 / 283

);

 return code;

 }

 Console.WriteLine(

 "设置轨迹文件成功/Set trajectory file success"

);

 // [ZH] 准备离线轨迹

 // [EN] Prepare offline trajectory

 code =

 controller.Trajectory.PrepareOfflineTrajectory();

 if (code != StatusCode.OK)

 {

 Console.WriteLine(

 $"准备离线轨迹失败/Prepare offline trajectory failed: {code.GetD

escription()}"

);

 return code;

 }

 Console.WriteLine(

 "准备离线轨迹成功/Prepare offline trajectory success"

);

 // [ZH] 等待机器人和伺服器空闲

 // [EN] Wait for robot and servo to be idle

 startTime = System.DateTime.Now;

 RobotState robotStatus;

 ServoState servoStatus;

 StatusCode robotStatusCode;

 StatusCode servoStatusCode;

 do

 {

 (robotStatus, robotStatusCode) =

 controller.GetRobotState();

 if (robotStatusCode != StatusCode.OK)

 {

 Console.WriteLine(

 $"获取机器人状态失败/Get robot state failed: {robotStatusCod

e.GetDescription()}"

);

 return robotStatusCode;

4.7 Trajectory Control | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 208 / 283

 }

 (servoStatus, servoStatusCode) =

 controller.GetServoState();

 if (servoStatusCode != StatusCode.OK)

 {

 Console.WriteLine(

 $"获取伺服状态失败/Get servo state failed: {servoStatusCode.

GetDescription()}"

);

 return servoStatusCode;

 }

 Console.WriteLine(

 $"机器人状态/Robot state: {robotStatus}, 伺服状态/Servo state:

{servoStatus}"

);

 if (

 robotStatus == RobotState.ROBOT_IDLE

 && servoStatus == ServoState.SERVO_IDLE

)

 {

 Console.WriteLine(

 "机器人和伺服器已空闲/Robot and servo are idle"

);

 break;

 }

 Thread.Sleep(2000); // 等待2秒

 if (

 System.DateTime.Now - startTime

 > System.TimeSpan.FromSeconds(60)

)

 {

 Console.WriteLine(

 "等待机器人和伺服器空闲超时/Waiting for robot and servo idle

timeout"

);

 break;

 }

4.7 Trajectory Control | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 209 / 283

 } while (true);

 // [ZH] 执行离线轨迹

 // [EN] Execute offline trajectory

 code =

 controller.Trajectory.ExecuteOfflineTrajectory();

 if (code == StatusCode.OK)

 {

 Console.WriteLine(

 "执行离线轨迹成功/Execute offline trajectory success"

);

 Console.WriteLine(

 "机器人开始执行轨迹程序/Robot started executing trajectory progra

m"

);

 }

 else

 {

 Console.WriteLine(

 $"执行离线轨迹失败/Execute offline trajectory failed: {code.GetD

escription()}"

);

 }

 }

 catch (Exception ex)

 {

 Console.WriteLine(

 $"执行过程中发生异常/Exception occurred during execution/Exception o

ccurred during execution: {ex.Message}"

);

 code = StatusCode.OtherReason;

 }

 finally

 {

 // [ZH] 关闭连接

 // [EN] Close the connection

 StatusCode disconnectCode =

 controller.Disconnect();

 if (disconnectCode != StatusCode.OK)

 {

 Console.WriteLine(

 disconnectCode.GetDescription()

4.7 Trajectory Control | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 210 / 283

);

 if (code == StatusCode.OK)

 code = disconnectCode;

 }

 }

 return code;

 }

 /// <summary>

 /// 获取test_files文件夹中文件的路径示例方法

 /// 展示如何获取当前程序目录下的test_files文件夹中的文件路径

 /// </summary>

 private static string GetTestFilePath(string fileName)

 {

 // 获取当前程序集的目录

 string? codeFilePath =

 new System.Diagnostics.StackTrace(true)

 .GetFrame(0)

 ?.GetFileName();

 if (string.IsNullOrEmpty(codeFilePath))

 {

 throw new InvalidOperationException(

 "无法获取当前文件路径/Cannot get current file path"

);

 }

 string? codeDirectory = Path.GetDirectoryName(

 codeFilePath

);

 if (string.IsNullOrEmpty(codeDirectory))

 {

 throw new InvalidOperationException(

 "无法获取当前目录路径/Cannot get current directory path"

);

 }

 // 构建test_files文件夹路径

 string testFilesDirectory = Path.Combine(

 codeDirectory,

 "test_files"

);

4.7 Trajectory Control | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 211 / 283

 // 构建文件完整路径

 string filePath = Path.Combine(

 testFilesDirectory,

 fileName

);

 return filePath;

 }

}

4.7 Trajectory Control | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 212 / 283

Method Name Alarm.GetTopAlarm()

Description Gets the most severe alarm information.

Request Parameters None

Return Value
string: Alarm information string
StatusCode: Get operation execution result

Compatible robot software version
Collaborative (Copper): v7.5.0.0+
Industrial (Bronze): v7.5.0.0+

Example Code

4.8 Alarm Information

4.8.1 Getting the Most Severe Alarm

Alarm/GetTopAlarm.cs

using Agilebot.IR;

using Agilebot.IR.Types;

public class GetTopAlarm

{

 public static StatusCode Run(

 string controllerIP,

 bool useLocalProxy = true

)

 {

 // [ZH] 初始化捷勃特机器人

 // [EN] Initialize the Agilebot robot

 Arm controller = new Arm(

 controllerIP,

 useLocalProxy

);

cs

4.8 Alarm Information | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 213 / 283

 // [ZH] 连接捷勃特机器人

 // [EN] Connect to the Agilebot robot

 StatusCode code = controller.ConnectSync();

 Console.WriteLine(

 code != StatusCode.OK

 ? code.GetDescription()

 : "连接成功/Successfully connected."

);

 if (code != StatusCode.OK)

 {

 return code;

 }

 try

 {

 // [ZH] 获取最严重的一条报警

 // [EN] Get the most severe alarm

 string topError;

 (topError, code) =

 controller.Alarm.GetTopAlarm();

 if (code == StatusCode.OK)

 {

 Console.WriteLine(

 "获取最严重报警成功/Get Top Alarm Success"

);

 if (string.IsNullOrEmpty(topError))

 {

 Console.WriteLine(

 "当前无报警/No current alarms"

);

 }

 else

 {

 Console.WriteLine(

 $"最严重报警/Most Severe Alarm: {topError}"

);

 }

 }

 else

 {

 Console.WriteLine(

4.8 Alarm Information | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 214 / 283

Method Name Alarm.GetAllActiveAlarms()

Description Gets all currently active alarm information.

4.8.2 Getting All Active Alarms

 $"获取最严重报警失败/Get Top Alarm Failed: {code.GetDescription

()}"

);

 }

 }

 catch (Exception ex)

 {

 Console.WriteLine(

 $"执行过程中发生异常/Exception occurred during execution: {ex.Messag

e}"

);

 code = StatusCode.OtherReason;

 }

 finally

 {

 // [ZH] 关闭连接

 // [EN] Close the connection

 StatusCode disconnectCode =

 controller.Disconnect();

 if (disconnectCode != StatusCode.OK)

 {

 Console.WriteLine(

 disconnectCode.GetDescription()

);

 if (code == StatusCode.OK)

 code = disconnectCode;

 }

 }

 return code;

 }

}

4.8 Alarm Information | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 215 / 283

Method Name Alarm.GetAllActiveAlarms()

Request Parameters None

Return Value
List<string>: Alarm information list
StatusCode: Get operation execution result

Compatible robot software version
Collaborative (Copper): v7.5.0.0+
Industrial (Bronze): v7.5.0.0+

Example Code

Alarm/GetAllActiveAlarms.cs

using Agilebot.IR;

using Agilebot.IR.Types;

public class GetAllActiveAlarms

{

 public static StatusCode Run(

 string controllerIP,

 bool useLocalProxy = true

)

 {

 // [ZH] 初始化捷勃特机器人

 // [EN] Initialize the Agilebot robot

 Arm controller = new Arm(

 controllerIP,

 useLocalProxy

);

 // [ZH] 连接捷勃特机器人

 // [EN] Connect to the Agilebot robot

 StatusCode code = controller.ConnectSync();

 Console.WriteLine(

 code != StatusCode.OK

 ? code.GetDescription()

 : "连接成功/Successfully connected."

);

 if (code != StatusCode.OK)

cs

4.8 Alarm Information | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 216 / 283

 {

 return code;

 }

 try

 {

 // [ZH] 获取所有的活动的报警

 // [EN] Get all active alarms

 List<string> errors;

 (errors, code) =

 controller.Alarm.GetAllActiveAlarms();

 if (code == StatusCode.OK)

 {

 Console.WriteLine(

 "获取所有活动报警成功/Get All Active Alarm Success"

);

 Console.WriteLine(

 $"活动报警数量/Active Alarm Count: {errors.Count}"

);

 if (errors.Count == 0)

 {

 Console.WriteLine(

 "当前无活动报警/No active alarms"

);

 }

 else

 {

 Console.WriteLine(

 "活动报警列表/Active Alarm List:"

);

 for (int i = 0; i < errors.Count; i++)

 {

 Console.WriteLine(

 $" {i + 1}. {errors[i]}"

);

 }

 }

 }

 else

 {

 Console.WriteLine(

4.8 Alarm Information | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 217 / 283

Method Name Alarm.ResetAlarms()

Description Resets errors.

4.8.3 Resetting Alarms

 $"获取所有活动报警失败/Get All Active Alarm Failed: {code.GetDes

cription()}"

);

 }

 }

 catch (Exception ex)

 {

 Console.WriteLine(

 $"执行过程中发生异常/Exception occurred during execution: {ex.Messag

e}"

);

 code = StatusCode.OtherReason;

 }

 finally

 {

 // [ZH] 关闭连接

 // [EN] Close the connection

 StatusCode disconnectCode =

 controller.Disconnect();

 if (disconnectCode != StatusCode.OK)

 {

 Console.WriteLine(

 disconnectCode.GetDescription()

);

 if (code == StatusCode.OK)

 code = disconnectCode;

 }

 }

 return code;

 }

}

4.8 Alarm Information | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 218 / 283

Method Name Alarm.ResetAlarms()

Request Parameters None

Return Value StatusCode: Function execution result

Compatible robot software version
Collaborative (Copper): v7.5.0.0+
Industrial (Bronze): v7.5.0.0+

4.8 Alarm Information | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 219 / 283

Method Name FileManager.Upload(string filePath , FileType ft , bool overWriting = false)

Description Uploads a local file to the robot controller.

Request Parameters

filePath : string Absolute path of the local file to be uploaded
ft : FileType Type of the file to be uploaded
overWriting : bool Whether to overwrite existing file in robot controller, default

is false (no overwrite)

Note
For USER_PROGRAM and BLOCK_PROGRAM, provide the full path to the .xml /
.block file; the system also uploads the same-name .json (and .xml for

BlockProgram).

Return Value StatusCode: Upload operation execution result

Compatible robot
software version

Collaborative (Copper): v7.5.0.0+
Industrial (Bronze): v7.5.0.0+

Method Name FileManager.Download(string fileName , FileType ft , string savePath)

Description Downloads a file from the robot controller to local.

Request
Parameters

fileName : string Name of the file to be downloaded
ft : FileType Type of the file to be downloaded
savePath : string Local save path for the downloaded file

Note
For UserProgram / BlockProgram / TrajectoryProgram , specify only the
program name (filename without extension). For TmpFile , provide the full
filename with extension.

4.9 File Service Class

4.9.1 Uploading a Local File to the Robot

4.9.2 Downloading a Robot File to a Local Machine

4.9 File Service Class | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 220 / 283

Method Name FileManager.Download(string fileName , FileType ft , string savePath)

Return Value StatusCode: Download operation execution result

Compatible robot
software version

Collaborative (Copper): v7.5.0.0+
Industrial (Bronze): v7.5.0.0+

Method Name FileManager.Delete(string fileName , FileType ft)

Description Deletes a file from the robot controller.

Request Parameters
fileName : string Name of the file to be deleted
ft : FileType Type of the file to be deleted

Note
For UserProgram / BlockProgram / TrajectoryProgram , specify only the
program name (filename without extension). For TmpFile , provide the full
filename with extension.

Return Value StatusCode: Delete operation execution result

Compatible robot
software version

Collaborative (Copper): v7.5.0.0+
Industrial (Bronze): v7.5.0.0+

Example Code

4.9.3 Deleting a File from the Robot

FileManager/UserProgramOperations.cs

using System.Collections.Generic;

using System.IO;

using Agilebot.IR;

using Agilebot.IR.FileManager;

using Agilebot.IR.Types;

public class UserProgramOperations

{

 /// <summary>

 /// 测试用户程序文件的完整操作流程：上传、下载、搜索和删除

cs

4.9 File Service Class | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 221 / 283

 /// </summary>

 public static StatusCode Run(

 string controllerIP,

 bool useLocalProxy = true

)

 {

 // [ZH] 初始化捷勃特机器人

 // [EN] Initialize the Agilebot robot

 Arm controller = new Arm(

 controllerIP,

 useLocalProxy

);

 // [ZH] 连接捷勃特机器人

 // [EN] Connect to the Agilebot robot

 StatusCode code = controller.ConnectSync();

 Console.WriteLine(

 code != StatusCode.OK

 ? code.GetDescription()

 : "连接成功/Successfully connected."

);

 if (code != StatusCode.OK)

 {

 return code;

 }

 try

 {

 Console.WriteLine(

 "开始用户程序文件操作测试/Starting User Program File Operations Test"

);

 // [ZH] 获取测试文件路径

 // [EN] Get test file path

 string file_user_program = GetTestFilePath(

 "test_prog.xml"

);

 string fileName = "test_prog";

 string save_path = GetTestFilePath("download");

 // [ZH] 上传用户程序文件

4.9 File Service Class | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 222 / 283

 // [EN] Upload user program file

 code = controller.FileManager.Upload(

 file_user_program,

 FileType.UserProgram,

 true

);

 if (code == StatusCode.OK)

 {

 Console.WriteLine(

 $"用户程序文件上传成功/User Program File Upload Success: {fileNa

me}"

);

 }

 else

 {

 Console.WriteLine(

 $"用户程序文件上传失败/User Program File Upload Failed: {code.Ge

tDescription()}"

);

 return code;

 }

 // [ZH] 等待下载

 // [EN] Wait before download

 Thread.Sleep(1000);

 // [ZH] 下载用户程序文件

 // [EN] Download user program file

 code = controller.FileManager.Download(

 fileName,

 FileType.UserProgram,

 save_path

);

 if (code == StatusCode.OK)

 {

 Console.WriteLine(

 $"用户程序文件下载成功/User Program File Download Success: {file

Name}"

);

 }

 else

 {

4.9 File Service Class | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 223 / 283

 Console.WriteLine(

 $"用户程序文件下载失败/User Program File Download Failed: {code.

GetDescription()}"

);

 return code;

 }

 // [ZH] 搜索用户程序文件

 // [EN] Search user program file

 List<string> results = new List<string>();

 (results, code) = controller.FileManager.Search(

 fileName

);

 if (code == StatusCode.OK)

 {

 Console.WriteLine(

 $"用户程序文件搜索成功/User Program File Search Success"

);

 Console.WriteLine(

 $"搜索结果数量/Search Results Count: {results.Count}"

);

 foreach (var result in results)

 {

 Console.WriteLine(

 $" 找到文件/Found File: {result}"

);

 }

 }

 else

 {

 Console.WriteLine(

 $"用户程序文件搜索失败/User Program File Search Failed: {code.Ge

tDescription()}"

);

 return code;

 }

 // [ZH] 等待删除

 // [EN] Wait before delete

 Thread.Sleep(1000);

 // [ZH] 删除用户程序文件

4.9 File Service Class | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 224 / 283

 // [EN] Delete user program file

 code = controller.FileManager.Delete(

 fileName,

 FileType.UserProgram

);

 if (code == StatusCode.OK)

 {

 Console.WriteLine(

 $"用户程序文件删除成功/User Program File Delete Success: {fileNa

me}"

);

 }

 else

 {

 Console.WriteLine(

 $"用户程序文件删除失败/User Program File Delete Failed: {code.Ge

tDescription()}"

);

 return code;

 }

 Console.WriteLine(

 "用户程序文件操作测试完成/User Program File Operations Test Complete

d"

);

 }

 catch (Exception ex)

 {

 Console.WriteLine(

 $"执行过程中发生异常/Exception occurred during execution: {ex.Messag

e}"

);

 code = StatusCode.OtherReason;

 }

 finally

 {

 // [ZH] 关闭连接

 // [EN] Close the connection

 StatusCode disconnectCode =

 controller.Disconnect();

 if (disconnectCode != StatusCode.OK)

 {

4.9 File Service Class | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 225 / 283

 Console.WriteLine(

 disconnectCode.GetDescription()

);

 if (code == StatusCode.OK)

 code = disconnectCode;

 }

 }

 return code;

 }

 /// <summary>

 /// 获取test_files文件夹中文件的路径示例方法

 /// 展示如何获取当前程序目录下的test_files文件夹中的文件路径

 /// </summary>

 private static string GetTestFilePath(string fileName)

 {

 // [ZH] 获取当前程序集的目录

 // [EN] Get current assembly directory

 string? codeFilePath =

 new System.Diagnostics.StackTrace(true)

 .GetFrame(0)

 ?.GetFileName();

 if (string.IsNullOrEmpty(codeFilePath))

 {

 throw new InvalidOperationException(

 "无法获取当前文件路径/Cannot get current file path"

);

 }

 string? codeDirectory = Path.GetDirectoryName(

 codeFilePath

);

 if (string.IsNullOrEmpty(codeDirectory))

 {

 throw new InvalidOperationException(

 "无法获取当前目录路径/Cannot get current directory path"

);

 }

 // [ZH] 构建test_files文件夹路径

 // [EN] Build test_files folder path

4.9 File Service Class | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 226 / 283

Method Name FileManager.Search(string pattern , ref List<string> fl)

Description
Searches for files on the robot controller that match the filename
pattern.

Request Parameters
pattern : string Filename match pattern
fl : ref List<string> Returned file list

Return Value StatusCode: Search operation execution result

Compatible robot software
version

Collaborative (Copper): v7.5.0.0+
Industrial (Bronze): v7.5.0.0+

4.9.4 Search Files by Filename Pattern

 string testFilesDirectory = Path.Combine(

 codeDirectory,

 "test_files"

);

 // [ZH] 构建文件完整路径

 // [EN] Build complete file path

 string filePath = Path.Combine(

 testFilesDirectory,

 fileName

);

 return filePath;

 }

}

4.9 File Service Class | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 227 / 283

Method Name BasScript(name)

Description
BasScript script program class constructor, corresponds to program
instructions in teaching pendant program writing.

Request Parameters name : string Script program name

Compatible robot
software version

Collaborative (Copper): v7.5.2.0+
Industrial (Bronze): Not supported

Note
All methods in the BasScript script program class have the same compatible
robot software version requirements as this class.

Method Name
BasScript.BasMotion.MoveJoint(poseType, poseIndex, speedType, speedValue,
smoothType, smoothDistance, extraParam)

Description
Executes joint motion instruction, corresponds to MoveJoint instruction in teaching
pendant program writing.

Request
Parameters

poseType : Pose type
poseIndex : Pose index
speedType : Speed type
speedValue : Speed value
smoothType : Smooth type
smoothDistance : Smooth distance
extraParam : Extra parameter

Return Value StatusCode: Motion instruction execution result

4.10 BasScript Script Program Class

4.10.1 Motion to Point Instruction

4.10.2 Linear Motion to Point Instruction

4.10 BasScript Script Program Class | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 228 / 283

Method Name
BasScript.BasMotion.MoveLine(poseType, poseIndex, speedType, speedValue,
smoothType, smoothDistance, extraParam)

Description
Executes linear motion instruction, corresponds to MoveLine instruction in teaching
pendant program writing.

Request
Parameters

poseType : Pose type
poseIndex : Pose index
speedType : Speed type
speedValue : Speed value
smoothType : Smooth type
smoothDistance : Smooth distance
extraParam : Extra parameter

Return Value StatusCode: Motion instruction execution result

Method
Name

BasScript.BasMotion.MoveCircle(poseType1, poseIndex1, poseType2, poseIndex2,
speedType, speedValue, smoothType, smoothDistance, extraParam)

Description
Executes arc motion instruction, corresponds to MoveCircle instruction in teaching
pendant program writing.

Request
Parameters

poseType1 : Intermediate point pose type
poseIndex1 : Intermediate point pose index
poseType2 : End point pose type
poseIndex2 : End point pose index
speedType : Speed type
speedValue : Speed value
smoothType : Smooth type
smoothDistance : Smooth distance
extraParam : Extra parameter

Return Value StatusCode: Motion instruction execution result

4.10.3 Arc Motion to Point Instruction

4.10.4 Jump Point-to-Point Motion Instruction

4.10 BasScript Script Program Class | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 229 / 283

Method Name
BasScript.BasMotion.Jump(poseType, poseIndex, speedValue, speedRatio,
limZType, limZValue, smoothType, smoothDistance, extraParam)

Description JUMP instruction, robot point-to-point motion to specified position

Request
Parameters

poseType : Target pose storage type
poseIndex : Target position index
speedValue : Motion speed value
speedRatio : Motion speed ratio
limZType : Z-axis limit type
limZValue : Z-axis limit value
smoothType : Smooth type
smoothDistance : Smooth distance
extraParam : Extra parameter

Return Value StatusCode: Motion instruction execution result

Method Name
BasScript.BasMotion.Jump3(poseType, poseIndex, speedValue, speedRatio,
smoothType, smoothDistance, extraParam)

Description JUMP3 instruction, robot point-to-point motion to specified position

Request
Parameters

poseType : Target pose storage type
poseIndex : 3 target position indices
speedValue : Motion speed value
speedRatio : Motion speed ratio
smoothType : Smooth type
smoothDistance : Smooth distance
extraParam : Extra parameter

Return Value StatusCode: Motion instruction execution result

4.10.5 Jump3 Three-Point Jump Instruction

4.10.6 Jump3CP Three-Point Jump CP Instruction

4.10 BasScript Script Program Class | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 230 / 283

Method Name
BasScript.BasMotion.Jump3CP(poseType, poseIndex, speedValue, smoothType,
smoothDistance, extraParam)

Description JUMP3CP instruction, robot point-to-point motion to specified position

Request
Parameters

poseType : Target pose storage type
poseIndex : 3 target position indices
speedValue : Motion speed value
smoothType : Smooth type
smoothDistance : Smooth distance
extraParam : Extra parameter

Return Value StatusCode: Motion instruction execution result

Method Name ExtraParam.Acceleration(value)

Description Sets additional acceleration parameter

Request Parameters value : double Acceleration value, range 1~120

Return Value StatusCode: Parameter setting execution result

Method Name ExtraParam.RTCP()

Description Sets RTCP (Real-Time Control Protocol) parameter

Request Parameters None

Return Value StatusCode: Parameter setting execution result

Method Name ExtraParam.Offset(index)

Description Sets coordinate offset parameter

Request Parameters index : int PR index for offset

Return Value StatusCode: Parameter setting execution result

4.10.7 Extra Parameter Class

4.10 BasScript Script Program Class | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 231 / 283

Method Name ExtraParam.TB(second, type, name)

Description
Sets delay parameter to execute program instruction after current instruction
runs

Request
Parameters

second : double Delay in seconds
type : string Instruction type
name : string Program name

Return Value StatusCode: Parameter setting execution result

Method Name ExtraParam.TB(second, type, index, status)

Description Sets delay parameter to assign value to specified IO after current instruction runs

Request Parameters

second : double Delay in seconds
type : string IO type
index : int IO index
status : int Status to assign

Return Value StatusCode: Parameter setting execution result

Method Name ExtraParam.SKIP(index)

Description Sets jump instruction parameter

Request Parameters index : int Jump to the specified LABEL index

Return Value StatusCode: Parameter setting execution result

Method Name BasScript.AssignValue(param1, index, param2, value, optIndex, optValue)

Description Assignment instruction

Request Parameters param1: Type of parameter 1
index: Index of parameter 1
param2: Type of parameter 2
value: Value of parameter 2

4.10.8 AssignValue Assignment Instruction

4.10 BasScript Script Program Class | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 232 / 283

Method Name BasScript.AssignValue(param1, index, param2, value, optIndex, optValue)

optIndex: Additional index for parameter 1
optValue: Additional value for parameter 2

Return Value StatusCode: Result of function execution

Method Name BasScript.AssignValue(param, index, value)

Description Assign a value to a variable

Request Parameters
param: Parameter type (AssignType)
index: Index (integer)
value: Value (IOStatus, double, or string)

Return Value StatusCode: Result of function execution

Method Name BasScript.BasLogical.IF(param1, index, param2, value, operatorType)

Description Adds a logical IF statement to the script

Request Parameters

param1: First parameter, type RegisterType or IOType
index: Index (integer)
param2: Second parameter, type RegisterType, IOType, or OtherType
value: Value, type index, number, string, or IOStatus
operatorType: Boolean operator, default is equal

Return Value StatusCode: Result of function execution

4.10.9 AssignValue Assignment Instruction

4.10.10 IF Conditional Instruction

4.10.11 ELSE_IF Conditional Branch Instruction

4.10 BasScript Script Program Class | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 233 / 283

Method Name BasScript.BasLogical.ELSE_IF(param1, index, param2, value, operatorType)

Description Adds a logical ELSE IF statement to the script

Request Parameters

param1: First parameter, type RegisterType or IOType
index: Index (integer)
param2: Second parameter, type RegisterType, IOType, or OtherType
value: Value, type index, number, string, or IOStatus
operatorType: Boolean operator, default is equal

Return Value StatusCode: Result of function execution

Method Name BasScript.BasLogical.ELSE()

Description Adds a logical ELSE statement to the script

Request Parameters None

Return Value StatusCode: Result of function execution

Method Name BasScript.BasLogical.END_IF()

Description Ends the logical IF statement

Request Parameters None

Return Value StatusCode: Result of function execution

4.10.12 ELSE Instruction

4.10.13 END_IF End Conditional Instruction

4.10.14 WHILE Loop Instruction

4.10 BasScript Script Program Class | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 234 / 283

Method Name BasScript.BasLogical.WHILE(param1, index, param2, value, operatorType)

Description Adds a logical WHILE statement to the script

Request Parameters

param1: First parameter, type RegisterType or IOType
index: Index (integer)
param2: Second parameter, type RegisterType, IOType, or OtherType
value: Value, type index, number, string, or IOStatus
operatorType: Boolean operator, default is equal

Return Value StatusCode: Result of function execution

Method Name BasScript.BasLogical.END_WHILE()

Description Ends the logical While statement

Request Parameters None

Return Value StatusCode: Result of function execution

Method Name BasScript.BasLogical.SWITCH(param, index)

Description Adds a logical SWITCH statement to the script

Request Parameters
param: Parameter, type RegisterType or IOType
index: Index of the parameter

Return Value StatusCode: Result of function execution

4.10.15 END_WHILE End Loop Instruction

4.10.16 SWITCH Multi-Branch Selection Instruction

4.10.17 CASE Branch Instruction

4.10 BasScript Script Program Class | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 235 / 283

Method Name BasScript.BasLogical.CASE(param, value)

Description Adds a logical CASE statement to the script

Request Parameters
param: Parameter, type RegisterType, IOType, or OtherType
value: Value, type index, number, string

Return Value StatusCode: Result of function execution

Method Name BasScript.BasLogical.DEFAULT()

Description Adds a logical DEFAULT statement to the script

Request Parameters None

Return Value StatusCode: Result of function execution

Method Name BasScript.BasLogical.END_SWITCH()

Description Ends the logical SWITCH statement

Request Parameters None

Return Value StatusCode: Result of function execution

Method Name
BasScript.BasLogical.SKIP_CONDITION(param1, index, param2, value,
operatorType)

Description Adds a logical SKIP CONDITION statement to the script

4.10.18 DEFAULT Branch Instruction

4.10.19 END_SWITCH End Multi-Branch Selection Instruction

4.10.20 SKIP_CONDITION Skip Condition Instruction

4.10 BasScript Script Program Class | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 236 / 283

Method Name
BasScript.BasLogical.SKIP_CONDITION(param1, index, param2, value,
operatorType)

Request
Parameters

param1: First parameter, type RegisterType or IOType
index: Index of parameter 1
param2: Second parameter, type RegisterType, IOType, or OtherType
value: Value, type index, number, string, or IOStatus
operatorType: Boolean operator, default is equal

Return Value StatusCode: Result of function execution

Method Name BasScript.BasStructure.WAIT(param1, index, param2, value, operatorType)

Description Adds a logical WAIT COND statement to the script

Request Parameters

param1: First parameter, type RegisterType or IOType
index: Index of parameter 1
param2: Second parameter, type ValuesType, IOType, or OtherType
value: Value, type index, number, string, or IOStatus
operatorType: Boolean operator, default is equal

Return Value StatusCode: Result of function execution

Method Name BasScript.BasStructure.WAIT_TIME(param, value)

Description WAIT TIME waits for a certain amount of time

Request Parameters
param: Parameter type
value: Time value to wait

Return Value StatusCode: Result of function execution

4.10.21 WAIT Wait Condition Instruction

4.10.22 WAIT_TIME Wait Time Instruction

4.10 BasScript Script Program Class | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 237 / 283

Method Name BasScript.BasLogical.GOTO(index)

Description GOTO jump statement

Request Parameters index: Index of the target label

Return Value StatusCode: Result of function execution

Method Name BasScript.BasLogical.LABEL(index)

Description LABEL statement

Request Parameters index: Index of the label

Return Value StatusCode: Result of function execution

Method Name BasScript.BasLogical.BREAK()

Description BREAK statement

Request Parameters None

Return Value StatusCode: Result of function execution

4.10.23 GOTO Jump Instruction

4.10.24 LABEL Instruction

4.10.25 BREAK Break Out of Loop Instruction

4.10.26 CONTINUE Skip Loop Instruction

4.10 BasScript Script Program Class | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 238 / 283

Method Name BasScript.BasLogical.CONTINUE()

Description CONTINUE statement

Request Parameters None

Return Value StatusCode: Result of function execution

Method Name BasScript.BasStructure.PAUSE()

Description PAUSE statement

Request Parameters None

Return Value StatusCode: Result of function execution

Method Name BasScript.BasStructure.ABORT()

Description ABORT statement

Request Parameters None

Return Value StatusCode: Result of function execution

Method Name BasScript.BasStructure.CALL(name)

Description CALL synchronous program call

Request Parameters name: Program name

4.10.27 PAUSE Instruction

4.10.28 ABORT Instruction

4.10.29 CALL Synchronous Program Call Instruction

4.10 BasScript Script Program Class | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 239 / 283

Method Name BasScript.BasStructure.CALL(name)

Return Value StatusCode: Result of function execution

Method Name BasScript.BasStructure.RUN(name)

Description RUN asynchronous program call

Request Parameters name: Program name

Return Value StatusCode: Result of function execution

Method Name BasScript.BasStructure.LOAD(param, value)

Description LOAD load program

Request Parameters
param: Parameter, R register, SR register, number, or string
value: Value of the parameter, number or string

Return Value StatusCode: Result of function execution

Method Name BasScript.BasStructure.UNLOAD(param, value)

Description UNLOAD unload program

Request Parameters
param: Parameter, R register, SR register, number, or string
value: Value of the parameter, number or string

Return Value StatusCode: Result of function execution

4.10.30 RUN Asynchronous Program Call Instruction

4.10.31 LOAD Load Program Instruction

4.10.32 UNLOAD Unload Program Instruction

4.10 BasScript Script Program Class | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 240 / 283

Method Name BasScript.BasStructure.EXEC(param, value)

Description EXEC execute program

Request Parameters
param: Parameter, R register, SR register, number, or string
value: Value of the parameter, number or string

Return Value StatusCode: Result of function execution

Method Name BasScript.BasSocket.OPEN(index)

Description SOCKET OPEN open socket connection

Request Parameters index: SK register index

Return Value StatusCode: Result of function execution

Method Name BasScript.BasSocket.CLOSE(index)

Description SOCKET CLOSE close socket connection

Request Parameters index: SK register index

Return Value StatusCode: Result of function execution

4.10.33 EXEC Execute Program Instruction

4.10.34 OPEN Open Socket Connection Instruction

4.10.35 CLOSE Close Socket Connection Instruction

4.10.36 CONNECT Socket Connection Instruction

4.10 BasScript Script Program Class | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 241 / 283

Method Name BasScript.BasSocket.CONNECT(index)

Description SOCKET CONNECT connect socket

Request Parameters index: SK register index

Return Value StatusCode: Result of function execution

Method Name BasScript.BasSocket.SEND(index, msgType, value)

Description SOCKET SEND send data via socket

Request Parameters
index: SK register index
msgType: Message type
value: Message content or index

Return Value StatusCode: Result of function execution

Method Name BasScript.BasSocket.RECV(index, msgLength, msgType, value)

Description SOCKET RECV receive socket data

Request Parameters

index: SK register index
msgLength: Message length
msgType: Message type
value: Message content or index

Return Value StatusCode: Result of function execution

4.10.37 SEND Send Socket Data Instruction

4.10.38 RECV Receive Socket Data Instruction

4.10.39 READ_MH Read Modbus Holding Register Instruction

4.10 BasScript Script Program Class | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 242 / 283

Method Name BasScript.BasModbus.READ_MH(index, id, address, length, rIndex)

Description ReadMH read Modbus holding register

Request Parameters

index: Channel index
id: Modbus ID
address: Register address
length: Register length
rIndex: R register index to write to

Return Value StatusCode: Result of function execution

Method Name BasScript.BasModbus.READ_MI(index, id, address, length, rIndex)

Description ReadMI read Modbus input register

Request Parameters

index: Channel index
id: Modbus ID
address: Register address
length: Register length
rIndex: R register index to write to

Return Value StatusCode: Result of function execution

Method Name BasScript.BasModbus.WRITE_MH(index, id, address, length, valueType, value)

Description ModbusWriteMH write to Modbus holding register

Request Parameters index: Channel index
id: Modbus ID
address: Register address
length: Register length

4.10.40 READ_MI Read Modbus Input Register Instruction

4.10.41 WRITE_MH Write Modbus Holding Register Instruction

4.10 BasScript Script Program Class | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 243 / 283

Method Name BasScript.BasModbus.WRITE_MH(index, id, address, length, valueType, value)

valueType: Value type
value: Value or index

Return Value StatusCode: Result of function execution

Method Name BasScript.BasVision.FIND(name)

Description VISION FIND find vision program

Request Parameters name: Vision program name

Return Value StatusCode: Result of function execution

Method Name BasScript.BasVision.GET_OFFSET(name, index, labelIndex)

Description VISION GET OFFSET get vision program offset

Request Parameters
name: Vision program name
index: Vision register index
labelIndex: Label index

Return Value StatusCode: Result of function execution

Method Name BasScript.BasVision.GET_QUANTITY(name, index)

Description VISION GET QUANTITY get vision program result

4.10.42 FIND Find Vision Program Instruction

4.10.43 GET_OFFSET Get Vision Program Offset Instruction

4.10.44 GET_QUANTITY Get Vision Program Result Instruction

4.10 BasScript Script Program Class | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 244 / 283

Method Name BasScript.BasVision.GET_QUANTITY(name, index)

Request Parameters
name: Vision program name
index: R register index

Return Value StatusCode: Result of function execution

Method Name BasScript.SetParam(type, valueType, value)

Description SET PARAM set parameter

Request Parameters
type: Parameter type
valueType: Value type
value: Value

Return Value StatusCode: Result of function execution

4.10.45 SetParam Set Parameter Instruction

4.10 BasScript Script Program Class | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 245 / 283

Method Name CoordinateSystem.Get(CoordinateType type , int index)

Description
Gets the corresponding coordinate system information based on the
specified coordinate system type and index.

Request Parameters
type : CoordinateType Coordinate system type
index : int Coordinate system index

Return Value
Coordinate: Coordinate system information data
StatusCode: Get operation execution result

Compatible robot
software version

Collaborative (Copper): v7.5.0.0+
Industrial (Bronze): v7.5.0.0+

Method Name CoordinateSystem.Update(CoordinateType type , Coordinate coordinate)

Description
Updates the corresponding coordinate system based on the specified
coordinate system type and coordinate system information.

Request Parameters
type : CoordinateType Coordinate system type
coordinate : Coordinate Coordinate system information to be updated

Return Value StatusCode: Update operation execution result

Compatible robot
software version

Collaborative (Copper): v7.5.0.0+
Industrial (Bronze): v7.5.0.0+

4.11 Coordinate System Class

4.11.1 Getting Information of a Specified Coordinate System

4.11.2 Updating Coordinate System Information

4.11 Coordinate System Class | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 246 / 283

Method Name CoordinateSystem.Add(CoordinateType type , Coordinate coordinate)

Description
Adds a new coordinate system based on the specified coordinate system
type and coordinate system information.

Request Parameters
type : CoordinateType Coordinate system type
coordinate : Coordinate Coordinate system information to be added

Return Value StatusCode: Add operation execution result

Compatible robot
software version

Collaborative (Copper): v7.5.0.0+
Industrial (Bronze): v7.5.0.0+

Method Name CoordinateSystem.Delete(CoordinateType type , int index)

Description
Deletes the corresponding coordinate system information based on the
specified coordinate system type and index.

Request Parameters
type : CoordinateType Coordinate system type
index : int Coordinate system index

Return Value StatusCode: Delete operation execution result

Compatible robot
software version

Collaborative (Copper): v7.5.0.0+
Industrial (Bronze): v7.5.0.0+

4.11.3 Adding Coordinate System Information

4.11.4 Deleting Information of a Specified Coordinate System

4.11.5 Getting a List of Coordinate System Information

4.11 Coordinate System Class | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 247 / 283

Method Name CoordinateSystem.GetCoordinateList(CoordinateType type)

Description
Gets a list of all coordinate system information based on the specified
coordinate system type.

Request Parameters type : CoordinateType Coordinate system type

Return Value
List<[CoordSummary][#3.22.2]>: Coordinate system information list
StatusCode: Get operation execution result

Compatible robot
software version

Collaborative (Copper): v7.5.0.0+
Industrial (Bronze): v7.5.0.0+

Example Code

CoordinateSystem/TFCoordinateTest.cs

using Agilebot.IR;

using Agilebot.IR.CoordinateSystem;

using Agilebot.IR.Types;

public class TFCoordinateTest

{

 /// <summary>

 /// 测试 TF 坐标系的计算、添加、获取列表、获取单个坐标系、更新和删除操作

 /// </summary>

 public static StatusCode Run(

 string controllerIP,

 bool useLocalProxy = true

)

 {

 // [ZH] 初始化捷勃特机器人

 // [EN] Initialize the Agilebot robot

 Arm controller = new Arm(

 controllerIP,

 useLocalProxy

);

 // [ZH] 连接捷勃特机器人

 // [EN] Connect to the Agilebot robot

 StatusCode code = controller.ConnectSync();

cs

4.11 Coordinate System Class | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 248 / 283

 Console.WriteLine(

 code != StatusCode.OK

 ? code.GetDescription()

 : "连接成功/Successfully connected."

);

 if (code != StatusCode.OK)

 {

 return code;

 }

 try

 {

 // [ZH] 准备测试数据

 // [EN] Prepare test data

 var poseData = new List<Position>

 {

 new Position(

 847.0999429718556,

 166.7999999999656,

 276.8195498896624,

 90,

 0,

 -70

),

 new Position(

 809.0227439212846,

 166.79999999994843,

 459.80354972094295,

 90,

 0,

 -45

),

 new Position(

 717.1223240422377,

 166.79999999993265,

 654.0891675073312,

 90,

 0,

 -30

),

 new Position(

4.11 Coordinate System Class | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 249 / 283

 572.917828754028,

 166.79999999992168,

 825.1862002007621,

 90,

 0,

 -40

),

 };

 Console.WriteLine(

 "开始TF坐标系测试/Starting TF Coordinate Test"

);

 // [ZH] 计算坐标系

 // [EN] Calculate coordinate system

 Coordinate calculatedCoord = new Coordinate();

 (Position coord, StatusCode calculateCode) =

 controller.CoordinateSystem.Calculate(

 CoordinateType.ToolCoordinate,

 poseData

);

 if (code == StatusCode.OK)

 {

 Console.WriteLine(

 "计算TF坐标系成功/Calculate TF Coordinate Success"

);

 }

 else

 {

 Console.WriteLine(

 $"计算TF坐标系失败/Calculate TF Coordinate Failed: {code.GetDesc

ription()}"

);

 return code;

 }

 calculatedCoord.Id = 5;

 calculatedCoord.Data = coord;

 // [ZH] 删除可能存在的坐标系

 // [EN] Delete existing coordinate if exists

 StatusCode deleteCode =

4.11 Coordinate System Class | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 250 / 283

 controller.CoordinateSystem.Delete(

 CoordinateType.ToolCoordinate,

 calculatedCoord.Id

);

 Console.WriteLine(

 $"删除现有坐标系/Delete Existing Coordinate: {deleteCode.GetDescript

ion()}"

);

 // [ZH] 添加坐标系

 // [EN] Add coordinate system

 StatusCode addCode =

 controller.CoordinateSystem.Add(

 CoordinateType.ToolCoordinate,

 calculatedCoord

);

 if (addCode == StatusCode.OK)

 {

 Console.WriteLine(

 "添加TF坐标系成功/Add TF Coordinate Success"

);

 }

 else

 {

 Console.WriteLine(

 $"添加TF坐标系失败/Add TF Coordinate Failed: {addCode.GetDescrip

tion()}"

);

 return addCode;

 }

 // [ZH] 获取坐标系列表

 // [EN] Get coordinate list

 List<CoordSummary> listRes;

 (listRes, code) =

 controller.CoordinateSystem.GetCoordinateList(

 CoordinateType.ToolCoordinate

);

 if (code == StatusCode.OK)

 {

 Console.WriteLine(

 "获取TF坐标系列表成功/Get TF Coordinate List Success"

4.11 Coordinate System Class | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 251 / 283

);

 Console.WriteLine(

 $"坐标系列表数量/Coordinate List Count: {listRes.Count}"

);

 }

 else

 {

 Console.WriteLine(

 $"获取TF坐标系列表失败/Get TF Coordinate List Failed: {code.GetD

escription()}"

);

 return code;

 }

 // [ZH] 获取单个坐标系

 // [EN] Get single coordinate

 Coordinate getCoord;

 (getCoord, code) =

 controller.CoordinateSystem.Get(

 CoordinateType.ToolCoordinate,

 calculatedCoord.Id

);

 if (code == StatusCode.OK)

 {

 Console.WriteLine(

 "获取TF坐标系成功/Get TF Coordinate Success"

);

 Console.WriteLine(

 $"坐标系名称/Coordinate Name: {getCoord.Name}"

);

 }

 else

 {

 Console.WriteLine(

 $"获取TF坐标系失败/Get TF Coordinate Failed: {code.GetDescriptio

n()}"

);

 return code;

 }

 // [ZH] 更新坐标系

 // [EN] Update coordinate system

4.11 Coordinate System Class | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 252 / 283

 getCoord.Name = "test";

 StatusCode updateCode =

 controller.CoordinateSystem.Update(

 CoordinateType.ToolCoordinate,

 getCoord

);

 if (updateCode == StatusCode.OK)

 {

 Console.WriteLine(

 "更新TF坐标系成功/Update TF Coordinate Success"

);

 }

 else

 {

 Console.WriteLine(

 $"更新TF坐标系失败/Update TF Coordinate Failed: {updateCode.GetD

escription()}"

);

 return updateCode;

 }

 // [ZH] 删除坐标系

 // [EN] Delete coordinate system

 deleteCode = controller.CoordinateSystem.Delete(

 CoordinateType.ToolCoordinate,

 calculatedCoord.Id

);

 if (deleteCode == StatusCode.OK)

 {

 Console.WriteLine(

 "删除TF坐标系成功/Delete TF Coordinate Success"

);

 }

 else

 {

 Console.WriteLine(

 $"删除TF坐标系失败/Delete TF Coordinate Failed: {deleteCode.GetD

escription()}"

);

 return deleteCode;

 }

4.11 Coordinate System Class | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 253 / 283

 Console.WriteLine(

 "TF坐标系测试完成/TF Coordinate Test Completed"

);

 }

 catch (Exception ex)

 {

 Console.WriteLine(

 $"执行过程中发生异常/Exception occurred during execution: {ex.Messag

e}"

);

 code = StatusCode.OtherReason;

 }

 finally

 {

 // [ZH] 关闭连接

 // [EN] Close the connection

 StatusCode disconnectCode =

 controller.Disconnect();

 if (disconnectCode != StatusCode.OK)

 {

 Console.WriteLine(

 disconnectCode.GetDescription()

);

 if (code == StatusCode.OK)

 code = disconnectCode;

 }

 }

 return code;

 }

}

4.11 Coordinate System Class | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 254 / 283

Method Name
Jogging.Move(int ajNum , MoveMode moveMode , double stepLength = 0,
double stepAngle = 0)

Description Controls the robot to move continuously or by a specified increment.

Request
Parameters

ajNum : int, value 1–6 corresponds to joint numbers [1–6], or x, y, z, rx, ry, rz in
Cartesian space, depending on the currently selected coordinate system. Positive
values indicate movement in the positive direction, negative values indicate
movement in the negative direction.
moveMode : MoveMode, motion mode of the manipulator; supports incremental

or continuous motion.
stepLength : double, step length in mm or degrees (only effective in incremental

motion mode).
stepAngle : double, step angle in degrees (only effective in incremental motion

mode).

Return Value StatusCode: Status code indicating whether the jogging operation succeeded.

Compatible
Robot Software
Versions

Collaborative (Copper): v7.5.0.0+
Industrial (Bronze): v7.5.0.0+

Example Code

4.12 Robot Jogging Motion

4.12.1 Robot Jogging Motion

Jogging/StepJogging.cs

using Agilebot.IR;

using Agilebot.IR.Types;

public class StepJogging

{

 public static StatusCode Run(

 string controllerIP,

cs

4.12 Robot Jogging Motion | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 255 / 283

 bool useLocalProxy = true

)

 {

 // [ZH] 初始化捷勃特机器人

 // [EN] Initialize the Agilebot robot

 Arm controller = new Arm(

 controllerIP,

 useLocalProxy

);

 // [ZH] 连接捷勃特机器人

 // [EN] Connect to the Agilebot robot

 StatusCode code = controller.ConnectSync();

 Console.WriteLine(

 code != StatusCode.OK

 ? code.GetDescription()

 : "连接成功/Successfully connected."

);

 if (code != StatusCode.OK)

 {

 return code;

 }

 try

 {

 // [ZH] 获取机器人模式

 // [EN] Get robot mode

 (UserOpMode opMode, StatusCode opCode) =

 controller.GetOpMode();

 if (opCode == StatusCode.OK)

 {

 Console.WriteLine(

 $"当前机器人模式/Current robot mode: {opMode}"

);

 if (

 opMode != UserOpMode.UNLIMITED_MANUAL

 && opMode != UserOpMode.LIMIT_MANUAL

)

 {

 Console.WriteLine(

 $"示教运动必须在机器人手动模式下/Jogging must be in manual mo

4.12 Robot Jogging Motion | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 256 / 283

de"

);

 return StatusCode.OtherReason;

 }

 }

 else

 {

 Console.WriteLine(

 $"获取机器人模式失败/Failed to get robot mode: {opCode.GetDescri

ption()}"

);

 }

 // [ZH] 设置单步示教运动参数

 // [EN] Set step jogging parameters

 int ajNum = 1; // 轴序号，正数表示正方向运动

 MoveMode moveMode = MoveMode.Stepping; // 单步运动模式

 double stepLength = 5.0; // 步长，单位为mm或角度

 double stepAngle = 5.0; // 轴旋转角度，单位为角度

 Console.WriteLine(

 "开始单步示教运动/Starting Step Jogging"

);

 Console.WriteLine(

 $"轴序号/Axis Number: {ajNum}"

);

 Console.WriteLine(

 $"运动模式/Move Mode: {moveMode}"

);

 Console.WriteLine(

 $"步长/Step Length: {stepLength}"

);

 // [ZH] 执行单步示教运动

 // [EN] Execute step jogging movement

 code = controller.Jogging.Move(

 ajNum,

 moveMode,

 stepLength,

 stepAngle

);

 if (code == StatusCode.OK)

4.12 Robot Jogging Motion | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 257 / 283

 {

 Console.WriteLine(

 "单步示教运动执行成功/Step Jogging Executed Successfully"

);

 Console.WriteLine(

 $"轴{ajNum}向正方向移动{stepLength}单位/Axis {ajNum} moved {step

Length} units in positive direction"

);

 }

 else

 {

 Console.WriteLine(

 $"单步示教运动执行失败/Step Jogging Execution Failed: {code.GetD

escription()}"

);

 }

 // [ZH] 等待一秒后执行反向运动

 // [EN] Wait one second then execute reverse movement

 Thread.Sleep(1000);

 // [ZH] 执行反向单步运动

 // [EN] Execute reverse step movement

 int reverseAjNum = -ajNum; // 负数表示负方向运动

 code = controller.Jogging.Move(

 reverseAjNum,

 moveMode,

 stepLength,

 stepAngle

);

 if (code == StatusCode.OK)

 {

 Console.WriteLine(

 "反向单步示教运动执行成功/Reverse Step Jogging Executed Successfu

lly"

);

 Console.WriteLine(

 $"轴{Math.Abs(reverseAjNum)}向负方向移动{stepLength}单位/Axis {M

ath.Abs(reverseAjNum)} moved {stepLength} units in negative direction"

);

 }

 else

4.12 Robot Jogging Motion | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 258 / 283

4.12.2 Multi-Axis Simultaneous Continuous Motion

 {

 Console.WriteLine(

 $"反向单步示教运动执行失败/Reverse Step Jogging Execution Failed:

{code.GetDescription()}"

);

 }

 }

 catch (Exception ex)

 {

 Console.WriteLine(

 $"执行过程中发生异常/Exception occurred during execution: {ex.Messag

e}"

);

 code = StatusCode.OtherReason;

 }

 finally

 {

 // [ZH] 关闭连接

 // [EN] Close the connection

 StatusCode disconnectCode =

 controller.Disconnect();

 if (disconnectCode != StatusCode.OK)

 {

 Console.WriteLine(

 disconnectCode.GetDescription()

);

 if (code == StatusCode.OK)

 code = disconnectCode;

 }

 }

 return code;

 }

}

4.12 Robot Jogging Motion | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 259 / 283

Method Name Jogging.MultiMove(int[] ajNums)

Description Controls the robot to perform continuous motion on multiple axes simultaneously.

Request
Parameters

ajNums : int[], values 1–6 correspond to joint numbers [1–6], or x, y, z, rx, ry, rz in
Cartesian space, depending on the currently selected coordinate system. Positive
values indicate movement in the positive direction, negative values indicate
movement in the negative direction.

Return Value StatusCode: Status code indicating whether the jogging operation succeeded.

Compatible
Robot Software
Versions

Collaborative (Copper): v7.5.0.0+
Industrial (Bronze): v7.5.0.0+

Example Code

Jogging/MultiJogging.cs

using Agilebot.IR;

using Agilebot.IR.Jogging;

using Agilebot.IR.Types;

public class MultiJogging

{

 public static StatusCode Run(

 string controllerIP,

 bool useLocalProxy = true

)

 {

 // [ZH] 初始化捷勃特机器人

 // [EN] Initialize the Agilebot robot

 Arm controller = new Arm(

 controllerIP,

 useLocalProxy

);

 // [ZH] 连接捷勃特机器人

 // [EN] Connect to the Agilebot robot

 StatusCode code = controller.ConnectSync();

 Console.WriteLine(

cs

4.12 Robot Jogging Motion | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 260 / 283

 code != StatusCode.OK

 ? code.GetDescription()

 : "连接成功/Successfully connected."

);

 if (code != StatusCode.OK)

 {

 return code;

 }

 try

 {

 // [ZH] 获取机器人模式

 // [EN] Get robot mode

 (UserOpMode opMode, StatusCode opCode) =

 controller.GetOpMode();

 if (opCode == StatusCode.OK)

 {

 Console.WriteLine(

 $"当前机器人模式/Current robot mode: {opMode}"

);

 if (

 opMode != UserOpMode.UNLIMITED_MANUAL

 && opMode != UserOpMode.LIMIT_MANUAL

)

 {

 Console.WriteLine(

 $"示教运动必须在机器人手动模式下/Jogging must be in manual mo

de"

);

 return StatusCode.OtherReason;

 }

 }

 else

 {

 Console.WriteLine(

 $"获取机器人模式失败/Failed to get robot mode: {opCode.GetDescri

ption()}"

);

 }

 Console.WriteLine(

4.12 Robot Jogging Motion | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 261 / 283

 "开始多轴示教运动/Starting Multi-axis Jogging"

);

 Console.WriteLine(

 "演示多轴运动/Demo multi-axis step movements"

);

 // [ZH] 多轴运动

 // [EN] Multi-axis step movement

 Console.WriteLine(

 "\n=== 多轴运动/Multi-axis Step Movement ==="

);

 int[] axes = { 1, 2, 3 }; // 正方向运动

 code = controller.Jogging.MultiMove(axes);

 if (code == StatusCode.OK)

 {

 Console.WriteLine(

 "连续示教运动启动成功/Continuous Jogging Started Successfully"

);

 Console.WriteLine(

 "运动3秒后自动停止/Moving for 3 seconds then auto stop"

);

 // [ZH] 运动3秒

 // [EN] Move for 3 seconds

 Thread.Sleep(3000);

 // [ZH] 停止示教运动

 // [EN] Stop jogging movement

 controller.Jogging.Stop();

 Console.WriteLine(

 "示教运动已停止/Jogging Movement Stopped"

);

 }

 else

 {

 Console.WriteLine(

 $"连续示教运动启动失败/Continuous Jogging Start Failed: {code.Ge

tDescription()}"

);

 }

4.12 Robot Jogging Motion | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 262 / 283

Method Name Jogging.Stop()

Description Stops the robot jogging motion.

4.12.3 Stop Robot Jogging Motion

 Console.WriteLine(

 "\n多轴示教运动完成/Multi-axis Jogging Completed"

);

 }

 catch (Exception ex)

 {

 Console.WriteLine(

 $"执行过程中发生异常/Exception occurred during execution: {ex.Messag

e}"

);

 code = StatusCode.OtherReason;

 }

 finally

 {

 // [ZH] 关闭连接

 // [EN] Close the connection

 StatusCode disconnectCode =

 controller.Disconnect();

 if (disconnectCode != StatusCode.OK)

 {

 Console.WriteLine(

 disconnectCode.GetDescription()

);

 if (code == StatusCode.OK)

 code = disconnectCode;

 }

 }

 return code;

 }

}

4.12 Robot Jogging Motion | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 263 / 283

Method Name Jogging.Stop()

Request Parameters None

Return Value void

Notes
This method is only required to stop motion when in continuous
mode.

Compatible Robot Software
Versions

Collaborative (Copper): v7.5.0.0+
Industrial (Bronze): v7.5.0.0+

Example Code

Jogging/ContinuousJogging.cs

using Agilebot.IR;

using Agilebot.IR.Types;

public class ContinuousJogging

{

 public static StatusCode Run(

 string controllerIP,

 bool useLocalProxy = true

)

 {

 // [ZH] 初始化捷勃特机器人

 // [EN] Initialize the Agilebot robot

 Arm controller = new Arm(

 controllerIP,

 useLocalProxy

);

 // [ZH] 连接捷勃特机器人

 // [EN] Connect to the Agilebot robot

 StatusCode code = controller.ConnectSync();

 Console.WriteLine(

 code != StatusCode.OK

 ? code.GetDescription()

 : "连接成功/Successfully connected."

);

cs

4.12 Robot Jogging Motion | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 264 / 283

 if (code != StatusCode.OK)

 {

 return code;

 }

 try

 {

 // [ZH] 获取机器人模式

 // [EN] Get robot mode

 (UserOpMode opMode, StatusCode opCode) =

 controller.GetOpMode();

 if (opCode == StatusCode.OK)

 {

 Console.WriteLine(

 $"当前机器人模式/Current robot mode: {opMode}"

);

 if (

 opMode != UserOpMode.UNLIMITED_MANUAL

 && opMode != UserOpMode.LIMIT_MANUAL

)

 {

 Console.WriteLine(

 $"示教运动必须在机器人手动模式下/Jogging must be in manual mo

de"

);

 return StatusCode.OtherReason;

 }

 }

 else

 {

 Console.WriteLine(

 $"获取机器人模式失败/Failed to get robot mode: {opCode.GetDescri

ption()}"

);

 }

 // [ZH] 设置示教运动参数

 // [EN] Set jogging parameters

 int ajNum = 3; // 轴序号，正数表示正方向运动

 MoveMode moveMode = MoveMode.Continuous; // 连续运动模式

4.12 Robot Jogging Motion | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 265 / 283

 Console.WriteLine(

 "开始连续示教运动/Starting Continuous Jogging"

);

 Console.WriteLine(

 $"轴序号/Axis Number: {ajNum}"

);

 Console.WriteLine(

 $"运动模式/Move Mode: {moveMode}"

);

 // [ZH] 启动连续示教运动

 // [EN] Start continuous jogging movement

 code = controller.Jogging.Move(ajNum, moveMode);

 if (code == StatusCode.OK)

 {

 Console.WriteLine(

 "连续示教运动启动成功/Continuous Jogging Started Successfully"

);

 Console.WriteLine(

 "运动3秒后自动停止/Moving for 3 seconds then auto stop"

);

 // [ZH] 运动3秒

 // [EN] Move for 3 seconds

 Thread.Sleep(3000);

 // [ZH] 停止示教运动

 // [EN] Stop jogging movement

 controller.Jogging.Stop();

 Console.WriteLine(

 "示教运动已停止/Jogging Movement Stopped"

);

 }

 else

 {

 Console.WriteLine(

 $"连续示教运动启动失败/Continuous Jogging Start Failed: {code.Ge

tDescription()}"

);

 }

 }

 catch (Exception ex)

4.12 Robot Jogging Motion | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 266 / 283

 {

 Console.WriteLine(

 $"执行过程中发生异常/Exception occurred during execution: {ex.Messag

e}"

);

 code = StatusCode.OtherReason;

 }

 finally

 {

 // [ZH] 关闭连接

 // [EN] Close the connection

 StatusCode disconnectCode =

 controller.Disconnect();

 if (disconnectCode != StatusCode.OK)

 {

 Console.WriteLine(

 disconnectCode.GetDescription()

);

 if (code == StatusCode.OK)

 code = disconnectCode;

 }

 }

 return code;

 }

}

4.12 Robot Jogging Motion | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 267 / 283

Method Name SubPub.Connect()

Description Connects to the robot controller WebSocket server

Request Parameters None

Return Value Task: Asynchronous connection operation result

Compatible robot software version
Collaborative (Copper): v7.7.0.0+
Industrial (Bronze): v7.7.0.0+

Method Name SubPub.Disconnect()

Description Disconnects from the robot controller WebSocket server

Request Parameters None

Return Value Task: Asynchronous disconnect operation result

Compatible robot software version
Collaborative (Copper): v7.7.0.0+
Industrial (Bronze): v7.7.0.0+

4.13 Robot Subscription & Publish Interface

4.13.1 Connect to WebSocket Server

4.13.2 Disconnect from WebSocket Server

4.13.3 Subscribe to Robot Status

4.13 Robot Subscription & Publish Interface | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 268 / 283

Method Name
SubPub.SubscribeStatus(RobotTopicType[] topicTypes , int
frequency = 200)

Description Adds robot status data subscription

Request Parameters
topicTypes : RobotTopicType[] List of robot topic types to subscribe
frequency : int Subscription frequency in Hz, default is 200

Return Value Task: Asynchronous subscription operation result

Compatible robot software
version

Collaborative (Copper): v7.7.0.0+
Industrial (Bronze): v7.7.0.0+

Method Name
SubPub.SubscribeRegister(RegTopicType regType , int[] regIds , int
frequency = 200)

Description Adds register data subscription

Request Parameters
regType : RegTopicType Register type
regIds : int[] List of register IDs to subscribe
frequency : int Subscription frequency in Hz, default is 200

Return Value Task: Asynchronous subscription operation result

Compatible robot
software version

Collaborative (Copper): v7.7.0.0+
Industrial (Bronze): v7.7.0.0+

Method Name
SubPub.SubscribeIO((IOTopicType, int)[] ioList , int frequency =
200)

Description Subscribes to IO signal data, including digital inputs and outputs

Request Parameters
ioList : (IOTopicType, int)[] IO list, each element is (IO type, IO ID)

frequency : int Subscription frequency in Hz, default is 200

4.13.4 Subscribe to Registers

4.13.5 Subscribe to I/O Signals

4.13 Robot Subscription & Publish Interface | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 269 / 283

Method Name
SubPub.SubscribeIO((IOTopicType, int)[] ioList , int frequency =
200)

Return Value Task: Asynchronous subscription operation result

Compatible robot software
version

Collaborative (Copper): v7.7.0.0+
Industrial (Bronze): v7.7.0.0+

Method Name
SubPub.StartReceiving(Func<Dictionary<string, object>, Task>
onMessageReceived)

Description
Starts receiving subscription messages and processes received data through
callback function

Request Parameters
onMessageReceived : Func<Dictionary<string, object>, Task> Message

receiving callback function

Return Value Task: Asynchronous receiving task

Compatible robot
software version

Collaborative (Copper): v7.7.0.0+
Industrial (Bronze): v7.7.0.0+

Example Code

4.13.6 Start Receiving Messages

SubPub/CallbackReceiving.cs

using Agilebot.IR;

using Agilebot.IR.SubPub;

using Agilebot.IR.Types;

public class CallbackReceiving

{

 public static StatusCode Run(

 string controllerIP,

 bool useLocalProxy = true

)

 {

cs

4.13 Robot Subscription & Publish Interface | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 270 / 283

 // [ZH] 初始化捷勃特机器人

 // [EN] Initialize the Agilebot robot

 Arm controller = new Arm(

 controllerIP,

 useLocalProxy

);

 // [ZH] 连接捷勃特机器人

 // [EN] Connect to the Agilebot robot

 StatusCode code = controller.ConnectSync();

 Console.WriteLine(

 code != StatusCode.OK

 ? code.GetDescription()

 : "连接成功/Successfully connected."

);

 // [ZH] 初始化捷勃特机器人SubPub

 // [EN] Initialize the Agilebot robot SubPub

 var subPub = controller.SubPub;

 try

 {

 Console.WriteLine(

 "开始回调方式接收消息测试/Starting Callback Receiving Test"

);

 // [ZH] 连接到WebSocket服务器

 // [EN] Connect to WebSocket server

 subPub.Connect().Wait();

 Console.WriteLine(

 "WebSocket连接成功/WebSocket Connected Successfully"

);

 // [ZH] 订阅机器人状态

 // [EN] Subscribe to robot status

 var topicTypes = new RobotTopicType[]

 {

 RobotTopicType.TopicCurrentJoint,

 RobotTopicType.TopicRobotStatus,

 };

 subPub

 .SubscribeStatus(topicTypes, frequency: 100)

4.13 Robot Subscription & Publish Interface | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 271 / 283

 .Wait();

 Console.WriteLine(

 "机器人状态订阅成功/Robot Status Subscription Successful"

);

 // [ZH] 订阅寄存器

 // [EN] Subscribe to registers

 var regIds = new int[] { 1, 2, 3 };

 subPub

 .SubscribeRegister(

 RegTopicType.R,

 regIds,

 frequency: 100

)

 .Wait();

 Console.WriteLine(

 "寄存器订阅成功/Register Subscription Successful"

);

 // [ZH] 订阅IO

 // [EN] Subscribe to IO

 var ioList = new (IOTopicType, int)[]

 {

 (IOTopicType.DI, 0),

 (IOTopicType.DO, 1),

 };

 subPub

 .SubscribeIO(ioList, frequency: 100)

 .Wait();

 Console.WriteLine(

 "IO订阅成功/IO Subscription Successful"

);

 int messageCount = 0;

 int maxMessages = 10; // 接收10条消息后停止

 Console.WriteLine(

 "开始接收消息/Starting to receive messages..."

);

 // [ZH] 开始接收消息（回调方式）

 // [EN] Start receiving messages (callback method)

4.13 Robot Subscription & Publish Interface | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 272 / 283

 subPub

 .StartReceiving(async message =>

 {

 messageCount++;

 Console.WriteLine(

 $"\n=== 收到第{messageCount}条消息/Received Message #{messag

eCount} ==="

);

 foreach (var kv in message)

 {

 Console.WriteLine(

 $"{kv.Key}: {kv.Value}"

);

 }

 // [ZH] 接收指定数量消息后主动断开

 // [EN] Disconnect after receiving specified number of messages

 if (messageCount >= maxMessages)

 {

 Console.WriteLine(

 $"已接收{maxMessages}条消息，准备断开连接/Received {maxMe

ssages} messages, preparing to disconnect"

);

 subPub.Disconnect().Wait();

 Console.WriteLine(

 "WebSocket断开成功/WebSocket Disconnected Successfully"

);

 }

 await Task.CompletedTask;

 })

 .Wait();

 Console.WriteLine(

 "回调方式接收消息测试完成/Callback Receiving Test Completed"

);

 return StatusCode.OK;

 }

 catch (Exception ex)

 {

 Console.WriteLine(

 $"执行过程中发生异常/Exception occurred during execution: {ex.Messag

4.13 Robot Subscription & Publish Interface | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 273 / 283

Method Name SubPub.Receive()

Description Receives the next text message and returns it

Request Parameters None

Return Value Task<Dictionary<string, object>>: Received message dictionary

Compatible robot software version
Collaborative (Copper): v7.7.0.0+
Industrial (Bronze): v7.7.0.0+

Example Code

4.13.7 Receive Next Text Message

SubPub/PollingReceiving.cs

e}"

);

 return StatusCode.OtherReason;

 }

 finally

 {

 // [ZH] 关闭连接

 // [EN] Close the connection

 StatusCode disconnectCode =

 controller.Disconnect();

 if (disconnectCode != StatusCode.OK)

 {

 Console.WriteLine(

 disconnectCode.GetDescription()

);

 if (code == StatusCode.OK)

 code = disconnectCode;

 }

 }

 }

}

4.13 Robot Subscription & Publish Interface | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 274 / 283

using Agilebot.IR;

using Agilebot.IR.SubPub;

using Agilebot.IR.Types;

public class PollingReceiving

{

 public static StatusCode Run(

 string controllerIP,

 bool useLocalProxy = true

)

 {

 // [ZH] 初始化捷勃特机器人

 // [EN] Initialize the Agilebot robot

 Arm controller = new Arm(

 controllerIP,

 useLocalProxy

);

 // [ZH] 连接捷勃特机器人

 // [EN] Connect to the Agilebot robot

 StatusCode code = controller.ConnectSync();

 Console.WriteLine(

 code != StatusCode.OK

 ? code.GetDescription()

 : "连接成功/Successfully connected."

);

 // [ZH] 初始化捷勃特机器人SubPub

 // [EN] Initialize the Agilebot robot SubPub

 var subPub = controller.SubPub;

 try

 {

 Console.WriteLine(

 "开始轮询方式接收消息测试/Starting Polling Receiving Test"

);

 // [ZH] 连接到WebSocket服务器

 // [EN] Connect to WebSocket server

 subPub.Connect().Wait();

 Console.WriteLine(

cs

4.13 Robot Subscription & Publish Interface | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 275 / 283

 "WebSocket连接成功/WebSocket Connected Successfully"

);

 // [ZH] 订阅机器人状态

 // [EN] Subscribe to robot status

 var topicTypes = new RobotTopicType[]

 {

 RobotTopicType.TopicCurrentJoint,

 RobotTopicType.TopicRobotStatus,

 };

 subPub

 .SubscribeStatus(topicTypes, frequency: 100)

 .Wait();

 Console.WriteLine(

 "机器人状态订阅成功/Robot Status Subscription Successful"

);

 // [ZH] 订阅寄存器

 // [EN] Subscribe to registers

 var regIds = new int[] { 1, 2, 3 };

 subPub

 .SubscribeRegister(

 RegTopicType.R,

 regIds,

 frequency: 100

)

 .Wait();

 Console.WriteLine(

 "寄存器订阅成功/Register Subscription Successful"

);

 // [ZH] 订阅IO

 // [EN] Subscribe to IO

 var ioList = new (IOTopicType, int)[]

 {

 (IOTopicType.DI, 0),

 (IOTopicType.DO, 1),

 };

 subPub

 .SubscribeIO(ioList, frequency: 100)

 .Wait();

 Console.WriteLine(

4.13 Robot Subscription & Publish Interface | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 276 / 283

 "IO订阅成功/IO Subscription Successful"

);

 int messageCount = 0;

 int maxMessages = 10; // 接收10条消息后停止

 Console.WriteLine(

 "开始轮询接收消息/Starting to poll messages..."

);

 // [ZH] 循环接收消息直到达到期望数量

 // [EN] Loop to receive messages until reaching desired count

 do

 {

 messageCount++;

 try

 {

 // [ZH] 接收单条消息

 // [EN] Receive single message

 var message = subPub.Receive().Result;

 Console.WriteLine(

 $"\n=== 收到第{messageCount}条消息/Received Message #{messag

eCount} ==="

);

 foreach (var kv in message)

 {

 Console.WriteLine(

 $"{kv.Key}: {kv.Value}"

);

 }

 }

 catch (Exception ex)

 {

 Console.WriteLine(

 $"接收消息时发生异常/Exception while receiving message: {ex.

Message}"

);

 break;

 }

 } while (messageCount < maxMessages);

 // [ZH] 断开连接

4.13 Robot Subscription & Publish Interface | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 277 / 283

 // [EN] Disconnect

 subPub.Disconnect().Wait();

 Console.WriteLine(

 "WebSocket断开成功/WebSocket Disconnected Successfully"

);

 Console.WriteLine(

 "轮询方式接收消息测试完成/Polling Receiving Test Completed"

);

 return StatusCode.OK;

 }

 catch (Exception ex)

 {

 Console.WriteLine(

 $"执行过程中发生异常/Exception occurred during execution: {ex.Messag

e}"

);

 return StatusCode.OtherReason;

 }

 finally

 {

 // [ZH] 关闭连接

 // [EN] Close the connection

 StatusCode disconnectCode =

 controller.Disconnect();

 if (disconnectCode != StatusCode.OK)

 {

 Console.WriteLine(

 disconnectCode.GetDescription()

);

 if (code == StatusCode.OK)

 code = disconnectCode;

 }

 }

 }

}

4.13 Robot Subscription & Publish Interface | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 278 / 283

1. Arm constructor now includes teachPanelIP parameter.

2. Removed System.Text.Json dependency.

3. Added synchronous connection interface ConnectSync.

1. Fixed the incorrect read/write order of data in the PR register struct.

1. Fixed the stuttering issue during continuous jogging.

2. Fixed a build-time error where the proxy executable might fail to copy.

1. Refactored the underlying request pattern and added a local controller proxy service.

2. Introduced subscription functionality.

3. Reorganized the BasScript class structure.

4. Full support for both .NET Framework and .NET (Core/5+/6+).

Agilebot C# SDK Update Notes

2.0.3.* Update (2025/12/17)

2.0.2.* Update (2025/12/12)

2.0.1.* Update (2025/10/21)

Update 2.0.0.* (2025-09-10)

Version 1.0.1.0 Update (July 7, 2025)

Agilebot C# SDK Update Notes | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 279 / 283

1. Added the old register interface class RegistersOld to be compatible with robot versions prior
to 7.6.0.0

2. Added the Estop emergency braking interface

3. Fixed the example programs in the documentation

1. Implemented using RPC method.

2. Synchronized all interface definitions with the Python version.

Version 1.0.0.0 Update (May 30, 2025)

Agilebot C# SDK Update Notes | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 280 / 283

Help

Help | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 281 / 283

This document describes how to use AI assistance tools (such as CodeBuddy, Codex, Cursor, etc.)
to quickly develop robot plugins.

Before using AI coding, you need to prepare the reference documentation:

SDK Documentation: https://dev.sh-agilebot.com/docs/sdk/knowledge/docs.txt

Tip: If your AI agent cannot read URLs well, download the txt document above to your local
project directory and reference the local file path in your prompt.

Here is a complete example for creating a Python program that reads robot status:

If you rely on local documentation, you can modify it to:

AI Coding Support

Preparation

Example Prompt

Read the following documentation and write a Python program that reads the robot's

current position, coordinate system number, servo status, and other information.

Reference materials:

SDK Documentation: https://dev.sh-agilebot.com/docs/sdk/knowledge/docs.txt

Read the following documentation and write a Python program that reads the robot's

current position, coordinate system number, servo status, and other information.

Reference materials:

SDK Documentation: ./docs/sdk_docs.txt

AI Coding Support | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 282 / 283

https://dev.sh-agilebot.com/docs/sdk/knowledge/docs.txt

1. Clear Requirements: Clearly describe the functionality you want to implement

2. Provide Context: Reference relevant documentation and examples

3. Stepwise Implementation: Complex features can be generated step by step with AI

1. Code generated by AI needs to be verified and tested

2. Ensure code complies with project coding standards

3. Code involving robot control must undergo security review

Usage Tips

Notes

AI Coding Support | Agilebot Robot SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 283 / 283

	Agilebot Robot SDKAgilebot Robot SDK Manual
	Python SDK
	C# SDK

	C# SDK ​
	Prologue ​
	Version History ​
	Update Notes ​

	Robot Version Compatibility ​
	1 Introduction and Deployment ​
	1.1 Environment Requirements ​
	1.2 Installation ​
	IDE Setup ​
	Get the SDK and Create a Project ​
	Proxy Files and Troubleshooting ​
	Networking and Debugging Requirements ​

	1.3 Example Program Usage ​
	Run the Example ​
	Proxy Types ​

	2 Glossary ​
	3 Data Structures ​
	3.1 StatusCode ​
	Description ​
	Import ​
	Fields ​

	3.2 RobotState ​
	Description ​
	Import ​
	Fields ​

	3.3 CtrlState ​
	Description ​
	Import ​
	Fields ​

	3.4 ServoState ​
	Description ​
	Import ​
	Fields ​

	3.5 TransformStatusEnum ​
	Description ​
	Import ​
	Fields ​

	3.6 PayloadInfo ​
	Description ​
	Import ​
	Properties ​
	Example ​
	3.6.1 MassCenter ​
	Description ​
	Import ​
	Properties ​

	3.6.2 InertiaMoment ​
	Description ​
	Import ​
	Properties ​

	3.7 TransformState ​
	Description ​
	Import ​
	Fields ​

	3.8 TCSType ​
	Description ​
	Import ​
	Fields ​

	3.9 MotionPose ​
	Description ​
	Import ​
	Properties ​
	Example ​

	3.10 BaseCartData ​
	Description ​
	Import ​
	Properties ​
	Example ​
	3.10.1 Position ​
	Description ​
	Import ​
	Properties ​
	Example ​

	3.10.2 Posture ​
	Description ​
	Import ​
	Properties ​
	Example ​

	3.11 Joint ​
	Description ​
	Import ​
	Properties ​
	Example ​
	Notes ​

	3.12 PoseType ​
	Description ​
	Import ​
	Enum Values ​

	3.13 DHparam ​
	Description ​
	Import ​
	Properties ​
	Constructor ​
	Notes ​

	3.14 CartStatus ​
	Description ​
	Import ​
	Properties ​

	3.15 JointStatus ​
	Description ​
	Import ​
	Properties ​

	3.16 DragStatus ​
	Description ​
	Import ​
	Properties ​
	Constructor ​
	Example ​

	3.17 ProgramPose ​
	Description ​
	Import ​
	Properties ​
	Constructor ​
	Example ​
	3.17.1 ProgramPoseData ​
	Description ​
	Import ​
	Properties ​

	3.17.2 ProgramCartData ​
	Description ​
	Import ​
	Properties ​

	3.18 FileType ​
	Description ​
	Import ​
	Enum Values ​

	3.19 SignalType ​
	Description ​
	Import ​
	Enum Values ​

	3.20 PoseRegister ​
	Description ​
	Import ​
	Properties ​
	Constructor ​
	Example ​
	3.20.1 PoseRegisterData ​
	Description ​
	Import ​
	Properties ​

	3.22 Coordinate ​
	Description ​
	Import ​
	Properties ​
	Example ​
	3.22.1 CoordinateType ​
	Description ​

	Import ​
	Enum Values ​

	3.22.2 CoordSummary ​
	Description ​

	Import ​
	Properties ​
	Example ​

	4 Methods and Examples ​
	4.1 Basic Operations of the Robot ​
	4.1.1 Connecting to the Robot ​
	4.1.2 Checking the Connection with the Robot Arm ​
	4.1.3 Disconnecting from the Robot ​
	4.1.4 Getting the Current Robot Model ​
	4.1.5 Getting the Robot's Operating State ​
	4.1.6 Getting the Current Controller Operating State ​
	4.1.7 Getting the Current Servo State ​
	4.1.8 Getting the Robot Controller Version ​
	4.1.9 Setting the Robot's LED Indicator Light ​
	4.1.10 Robot Servo On ​
	4.1.11 Robot Servo Off ​
	4.1.12 Resetting the Robot Servo ​
	4.1.13 Emergency Stop ​

	4.2 Robot Motion Control and Status ​
	4.2.1 Getting Robot Parameters ​
	4.2.1.1 Getting OVC Overall Velocity Coefficient ​
	4.2.1.2 Getting OAC Overall Acceleration Coefficient ​
	4.2.1.3 Getting the Current TF ​
	4.2.1.4 Getting the Current UF ​
	4.2.1.5 Getting the Current TCS Teaching Coordinate System ​

	4.2.2 Setting Robot Parameters ​
	4.2.2.1 Setting OVC Overall Velocity Coefficient ​
	4.2.2.2 Setting OAC Overall Acceleration Coefficient ​
	4.2.2.3 Setting the Current TF Tool Coordinate System Index ​
	4.2.2.4 Setting the Current UF User Coordinate System Index ​
	4.2.2.5 Setting the Current TCS Teaching Coordinate System ​

	4.2.3 Converting Cartesian Position to Joint Values ​
	4.2.4 Converting Joint Values to Cartesian Position ​
	4.2.5 Moving the Robot End Effector to a Specified Position ​
	4.2.6 Moving the Robot End Effector Along a Straight Line to a Specified Position ​
	4.2.7 Moving the Robot End Effector Along an Arc to a Specified Position ​
	4.2.8 Getting the Current Pose of the Robot ​
	4.2.9 Getting the Robot's DH Parameters ​
	4.2.10 Setting the Robot's DH Parameters ​
	4.2.11 Getting the Robot Axis Lock Status ​
	4.2.12 Setting the Robot Axis Lock Status ​
	4.2.13 Enabling Drag Teaching for the Robot ​
	4.2.14 Entering Real-Time Position Control Mode ​
	4.2.15 Exiting Real-Time Position Control Mode ​
	4.2.16 Setting Subscription Parameters ​
	Data Push Description ​

	4.2.17 Getting the Robot's Soft Limits ​
	4.2.18 Specifying UDP Position Control Parameters ​
	4.2.19 Payload-Related Interfaces ​
	4.2.19.1 Getting the Current Active Payload ​
	4.2.19.2 Getting the Corresponding Payload ​
	4.2.19.3 Activating the Corresponding Payload ​
	4.2.19.4 Getting All Payload Information ​
	4.2.19.5 Adding a Payload ​
	4.2.19.6 Deleting a Specified Payload ​
	4.2.19.7 Updating a Specified Payload ​
	4.2.19.8 Checking if Axis 3 is Horizontal ​
	4.2.19.9 Getting the Payload Identification State ​
	4.2.19.10 Starting Payload Identification ​
	4.2.19.11 Getting the Payload Identification Result ​
	4.2.19.12 Starting Interference Check for Payload Identification ​
	4.2.19.13 Entering Payload Identification State ​
	4.2.19.14 Exiting Payload Identification State ​
	4.2.19.15 Full Payload Identification Process ​

	4.3 Robot Program Execution Class ​
	4.3.1 Executing a Specified Program ​
	4.3.2 Stopping the Currently Executing Program ​
	4.3.3 Returning Details of All Running Programs ​
	4.3.4 Pausing Program Execution ​
	4.3.5 Resuming Program Execution ​
	4.3.6 Executing a BAS Script Program ​

	4.4 Program Information Read/Write Operations ​
	4.4.1 Reading the Value of a Specified Pose in a Program ​
	4.4.2 Wirting the Value of a Specified Pose in a Program ​
	4.4.3 Adding a Pose to a Specified Program ​
	4.4.4 Deleting a Specified Pose from a Program ​
	4.4.5 Retrieving All Poses from a Specified Program ​
	4.4.6 Converting Pose Types in Robot Programs ​

	4.5 IO Signals ​
	4.5.1 Reading the Value of a Specified Type and Port IO ​
	4.5.2 Writing the Value of a Specified Type and Port IO ​
	4.5.3 Batch Write DO Signals ​
	4.5.4 Batch Read DO Signals ​

	4.6 Register Information ​
	4.6.1 R Numeric Register Operations ​
	4.6.1.1 Reading the Value of an R Register ​
	4.6.1.2 Writing the Value of an R Register ​
	4.6.1.3 Deleting an R Register ​

	4.6.2 MR Motion Register Operations ​
	4.6.2.1 Reading the Value of an MR Register ​
	4.6.2.2 Writing the Value of an MR Register ​
	4.6.2.3 Deleting an MR Register ​

	4.6.3 SR String Register Operations ​
	4.6.3.1 Reading the Value of an SR Register ​
	4.6.3.2 Writing the Value of an SR Register ​
	4.6.3.3 Deleting an SR Register ​

	4.6.4 PR Pose Register Operations ​
	4.6.4.1 Reading the Value of a PR Register ​
	4.6.4.2 Writing the Value of a PR Register ​
	4.6.4.3 Deleting a PR Register ​

	4.6.5 Modbus Registers (MH Holding Registers, MI Input Registers) ​
	4.6.5.1 Reading the Value of an MH Register ​
	4.6.5.2 Reading the Value of an MI Register ​
	4.6.5.3 Writing the Value of an MH Register ​
	4.6.5.4 Writing the Value of an MI Register ​

	4.7 Trajectory Control ​
	4.7.1 Setting the Offline Trajectory File ​
	4.7.2 Moving the Robot to the Start Point of the Offline Trajectory ​
	4.7.3 Starting Execution of the Offline Trajectory File ​
	4.7.4 Convert CSV Trajectory File to Trajectory Format ​
	4.7.5 Query Trajectory Conversion Status ​

	4.8 Alarm Information ​
	4.8.1 Getting the Most Severe Alarm ​
	4.8.2 Getting All Active Alarms ​
	4.8.3 Resetting Alarms ​

	4.9 File Service Class ​
	4.9.1 Uploading a Local File to the Robot ​
	4.9.2 Downloading a Robot File to a Local Machine ​
	4.9.3 Deleting a File from the Robot ​
	4.9.4 Search Files by Filename Pattern ​

	4.10 BasScript Script Program Class ​
	4.10.1 Motion to Point Instruction ​
	4.10.2 Linear Motion to Point Instruction ​
	4.10.3 Arc Motion to Point Instruction ​
	4.10.4 Jump Point-to-Point Motion Instruction ​
	4.10.5 Jump3 Three-Point Jump Instruction ​
	4.10.6 Jump3CP Three-Point Jump CP Instruction ​
	4.10.7 Extra Parameter Class ​
	4.10.8 AssignValue Assignment Instruction ​
	4.10.9 AssignValue Assignment Instruction ​
	4.10.10 IF Conditional Instruction ​
	4.10.11 ELSE_IF Conditional Branch Instruction ​
	4.10.12 ELSE Instruction ​
	4.10.13 END_IF End Conditional Instruction ​
	4.10.14 WHILE Loop Instruction ​
	4.10.15 END_WHILE End Loop Instruction ​
	4.10.16 SWITCH Multi-Branch Selection Instruction ​
	4.10.17 CASE Branch Instruction ​
	4.10.18 DEFAULT Branch Instruction ​
	4.10.19 END_SWITCH End Multi-Branch Selection Instruction ​
	4.10.20 SKIP_CONDITION Skip Condition Instruction ​
	4.10.21 WAIT Wait Condition Instruction ​
	4.10.22 WAIT_TIME Wait Time Instruction ​
	4.10.23 GOTO Jump Instruction ​
	4.10.24 LABEL Instruction ​
	4.10.25 BREAK Break Out of Loop Instruction ​
	4.10.26 CONTINUE Skip Loop Instruction ​
	4.10.27 PAUSE Instruction ​
	4.10.28 ABORT Instruction ​
	4.10.29 CALL Synchronous Program Call Instruction ​
	4.10.30 RUN Asynchronous Program Call Instruction ​
	4.10.31 LOAD Load Program Instruction ​
	4.10.32 UNLOAD Unload Program Instruction ​
	4.10.33 EXEC Execute Program Instruction ​
	4.10.34 OPEN Open Socket Connection Instruction ​
	4.10.35 CLOSE Close Socket Connection Instruction ​
	4.10.36 CONNECT Socket Connection Instruction ​
	4.10.37 SEND Send Socket Data Instruction ​
	4.10.38 RECV Receive Socket Data Instruction ​
	4.10.39 READ_MH Read Modbus Holding Register Instruction ​
	4.10.40 READ_MI Read Modbus Input Register Instruction ​
	4.10.41 WRITE_MH Write Modbus Holding Register Instruction ​
	4.10.42 FIND Find Vision Program Instruction ​
	4.10.43 GET_OFFSET Get Vision Program Offset Instruction ​
	4.10.44 GET_QUANTITY Get Vision Program Result Instruction ​
	4.10.45 SetParam Set Parameter Instruction ​

	4.11 Coordinate System Class ​
	4.11.1 Getting Information of a Specified Coordinate System ​
	4.11.2 Updating Coordinate System Information ​
	4.11.3 Adding Coordinate System Information ​
	4.11.4 Deleting Information of a Specified Coordinate System ​
	4.11.5 Getting a List of Coordinate System Information ​

	4.12 Robot Jogging Motion ​
	4.12.1 Robot Jogging Motion ​
	4.12.2 Multi-Axis Simultaneous Continuous Motion ​
	4.12.3 Stop Robot Jogging Motion ​

	4.13 Robot Subscription & Publish Interface ​
	4.13.1 Connect to WebSocket Server ​
	4.13.2 Disconnect from WebSocket Server ​
	4.13.3 Subscribe to Robot Status ​
	4.13.4 Subscribe to Registers ​
	4.13.5 Subscribe to I/O Signals ​
	4.13.6 Start Receiving Messages ​
	4.13.7 Receive Next Text Message ​

	Agilebot C# SDK Update Notes ​
	2.0.3.* Update (2025/12/17) ​
	2.0.2.* Update (2025/12/12) ​
	2.0.1.* Update (2025/10/21) ​
	Update 2.0.0.* (2025-09-10) ​
	Version 1.0.1.0 Update (July 7, 2025) ​
	Version 1.0.0.0 Update (May 30, 2025) ​

	Help ​
	AI Coding Support ​
	Preparation ​
	Example Prompt ​
	Usage Tips ​
	Notes ​

