
Python SDK

基于 Python 的高性能机器人控制开发套
件，提供简洁优雅的 API 设计，助力快速构
建智能机器人应用。

了解更多

C# SDK

面向 .NET 生态的企业级机器人控制解决方
案，提供类型安全的强类型 API，轻松集成
至工业自动化系统。

了解更多

捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd.

Agilebot Robot SDK | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 1 / 284

C# SDK

C# SDK | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 2 / 284

序章

序章 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 3 / 284

文档版本 SDK 版本号 版本时间

V3.2 2.0.3.* 2025.12.17

更新说明

版本记录

版本记录 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 4 / 284

SDK 支持捷勃特 Scara，Puma 及协作机器人系列。须对已安装机器人软件的设备使用。部分功能
因版本不同，返回结果有所差异。 SDK 连接到机械臂时会对机械臂运动控制软件的版本进行检
查，如果低于版本最低要求将无法连接，低于推荐版本要求将提示版本过低，请及时更新兼容的机

器人软件版本 SDK 某些接口只支持对应的版本控制器，请注意查看具体接口兼容性

SDK 版本 兼容的机器人软件版本 支持状态

0.1.1.X Copper v7.5.X.X、Bronze v7.4.X.X 不再支持

0.1.2.X Copper v7.5.X.X、Bronze v7.4.X.X 不再支持

0.2.0.X Copper v7.5.X.X、Bronze v7.4.X.X 不再支持

1.0.0.X Copper v7.6.X.X、Bronze v7.5.X.X 支持中

2.0.X.X Copper v7.7.X.X、Bronze v7.7.X.X 支持中

机器人版本兼容性

机器人版本兼容性 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 5 / 284

1 简介与部署

1 简介与部署 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 6 / 284

系统：

Windows 10 及以上

x86_64 架构

.NET 版本

6.0 以上

.NET Framework 版本

4.7 以上

1.1 环境要求

1.1 环境要求 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 7 / 284

本节介绍开发环境准备、SDK 获取与常见运行注意事项，确保在最短时间内完成 Agilebot SDK 的
本地调试。

1. 推荐使用 Visual Studio 作为 C# 开发环境，可在 下载 Visual Studio Tools - 免费安装
Windows、Mac、Linux 获取最新版本。

2. 安装完成后启动 Visual Studio，并根据提示完成初始配置（例如登录、安装必要的工作负
载）。

1. 在 Visual Studio 中新建 C# 控制台应用，目标框架选择 .NET 6.0 及以上 或 NET Framework 4.7

及以上 。

1.2 安装

IDE 安装与配置

SDK 获取与项目创建

1.2 安装 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 8 / 284

https://visualstudio.microsoft.com/zh-hans/downloads/
https://visualstudio.microsoft.com/zh-hans/downloads/

1.2 安装 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 9 / 284

2. 进入项目属性，将目标操作系统设置为 Windows，目标版本选择 7.0 或更高，确保能够使用最
新的 WinApp SDK 功能。

1.2 安装 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 10 / 284

1.2 安装 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 11 / 284

3. 打开 工具 > NuGet 包管理器 > 程序包管理器设置 ，在右上角的程序包源中添加 SDK 包所在目
录。

1.2 安装 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 12 / 284

1.2 安装 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 13 / 284

1.2 安装 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 14 / 284

4. 返回 NuGet 程序包管理器，将程序包源切换为刚添加的目录，搜索并安装 Agilebot.SDK 包。

1.2 安装 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 15 / 284

安装 SDK 后，项目会自动新增 Tools 文件夹，包含本地控制器代理服务所需的
controller_proxy_service_windows_amd64.exe 。若该文件未自动复制，可手动将其放入项目根目
录与生成输出目录。

如程序异常退出导致代理服务残留，可在 Windows 任务管理器中终止
controller_proxy_service_windows_amd64 进程。

代理服务运行时，请勿将代理服务所在目录移动到其他位置。

1. 开始编写并运行示例代码前，确保上位机已接入机器人网络，或与机器人位于同一局域网。

2. 调试过程中请保持网络连接稳定，避免代理服务因断网而退出。

代理服务与常见问题

联网要求与调试

1.2 安装 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 16 / 284

1.2 安装 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 17 / 284

本章示范如何使用 SDK 附带的 C#_example 项目，通过切换不同的启动项来快速体验主要功能

类。

1. 打开 C#_example 并运行，程序会自动弹出终端窗口。

2. 按提示输入机器人 IP 地址。

3. 选择代理服务部署位置（机器人内部或本地）。

4. 点击 “开始运行” 即可加载对应示例。

1.3 示例程序使用方法

运行步骤

1.3 示例程序使用方法 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 18 / 284

机器人内部代理：使用机器人控制柜自带的代理服务，代理运行在机器人控制柜上，适合机器
人软件版本不低于 v7.7.0.0 的场景。

本地控制器代理：使用 SDK 自带的代理服务，代理运行在上位机，占用资源极少，适用于所有
版本，机器人软件版本低于 v7.7.0.0 时只能使用本地控制器代理。

在 Airbot 上仅支持机器人内部代理（本地代理无法与 AirBot 通信），请选择对应选项以确保
连接成功。

代理类型说明

1.3 示例程序使用方法 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 19 / 284

名词 描述

示教器 连接在机器人上的手持设备，用于对机器人进行示教和控制

SDK 软件开发工具包，用于对机器人进行编程和控制

机器人网

络
机器人与外部计算机之间的网络连接

控制器 机器人的控制单元，负责执行运动指令、处理传感器数据和管理机器人状态

机械臂 机器人的主要运动部分，由多个关节和连杆组成

伺服系统 控制机器人关节运动的电机驱动系统，提供精确的位置和速度控制

示教 通过手动操作机器人或示教器来记录机器人运动轨迹和动作的过程

关节 机器人机械臂中连接各个连杆的可动部件，每个关节对应一个自由度

笛卡尔坐

标

以 X、Y、Z 三个相互垂直的轴为基准的三维坐标系统，用于描述机器人在空间中的位置和
姿态

位姿 机器人在空间中的位置和姿态的组合，包括位置坐标和旋转角度

轨迹 机器人末端执行器在空间中移动的路径，通常由一系列位姿点组成

负载 机器人末端执行器所承载的重量和物体，影响机器人的运动性能和精度

坐标系 用于描述机器人位置和姿态的参考系统，包括基坐标系、工具坐标系、用户坐标系等

OVC Overall Velocity Control，全局速度控制，用于设置机器人整体运动速度的倍率

OAC Overall Acceleration Control，全局加速度控制，用于设置机器人整体加速度的倍率

TF Tool Frame，工具坐标系，以机器人末端工具为原点的坐标系

UF User Frame，用户坐标系，用户自定义的坐标系，便于编程和定位

TCS Teach Coordinate System，示教坐标系，用于示教时的坐标参考系统

DH 参数 Denavit-Hartenberg 参数，用于描述机器人连杆几何关系的标准参数

PR 寄存器 Pose Register，位姿寄存器，用于存储机器人位姿信息的寄存器

2 名词解释

2 名词解释 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 20 / 284

名词 描述

MR 寄存器 Motion Register，运动寄存器，用于存储运动相关参数的寄存器

SR 寄存器 String Register，字符串寄存器，用于存储字符串信息的寄存器

R 寄存器 Real Register，实数寄存器，用于存储数值信息的寄存器

MH 寄存
器

Modbus Holding Register，Modbus 保持寄存器，用于 Modbus 通信的保持寄存器

MI 寄存器 Modbus Input Register，Modbus 输入寄存器，用于 Modbus 通信的输入寄存器

DI Digital Input，数字信号输入，用于接收外部数字信号

DO Digital Output，数字信号输出，用于控制外部设备或执行器

BAS Basic Script，基础脚本语言，用于编写机器人控制程序的高级编程语言

Scara
Selective Compliance Assembly Robot Arm，选择性柔顺装配机器人手臂，一种四轴工业
机器人类型

协作机器

人
能够与人类安全协作的机器人，通常具有力感知和碰撞检测功能

工业机器

人
用于工业自动化生产的机器人，通常具有高精度、高速度和高负载能力

Copper 捷勃特协作机器人产品线的代号

Bronze 捷勃特工业机器人产品线的代号

2 名词解释 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 21 / 284

接口返回状态码

名称 枚举值 描述

OK 0 执行成功

INCOMPATIBLE_VERSION -1 版本不兼容

TIMEOUT -3 连接超时

INTERFACE_NOT_IMPLEMENTED -4 接口未实现

INDEX_OUT_OF_RANGE -5 索引越界

UNSUPPORTED_FILETYPE -6 不支持的文件类型

UNSUPPORTED_PARAMETER -7 不支持的机器人参数

UNSUPPORTED_SIGNALTYPE -8 不支持的 IO 信号类型

PROGRAM_NOT_FOUND -9 找不到程序

PROGRAM_POSE_NOT_FOUND -10 找不到程序位姿信息

WRITE_PROGRAM_FAILED -11 更新程序位姿信息失败

3 数据结构

3.1 StatusCode

说明

导入

字段

using Agilebot.IR;
c#

3 数据结构 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 22 / 284

名称 枚举值 描述

GET_ALARM_CODE_FAILED -12 访问报警服务获取报警码失败

WRONG_POSITION_INFO -13 控制器返回错误的点位信息

UNSUPPORTED_TRA_TYPE -14 不支持的运动类型

FILE_NOT_FOUND -15 文件或文件夹未找到

FILE_ALREADY_EXIST -16 文件已存在

GET_ALARM_DESC_FAILED -17 根据报警码获取报警信息失败

RESET_ALARM_ERRORS_FAILED -18 重置报警信息失败

GET_ALL_ALARMS_FAILED -19 获取所有报警信息失败

WRONG_DATA_FORMAT -20 接收的数据格式有误

CONNECT_FAILED -21 初始化连接失败，请检查 ip 地址或控制柜服务

POSE_INDEX_DUPLICATED -23 位姿序号重复

CONTROLLER_ERROR -254 控制器错误，请联系开发人员

OTHER_REASON -255 其他原因

机器人运行状态

3.2 RobotState

说明

导入

字段

using Agilebot.IR.Types;
c#

3 数据结构 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 23 / 284

名称 枚举值 描述

WRONG_DATA -1 未知状态

ROBOT_IDLE 0 机器人空闲

ROBOT_RUNNING 1 机器人运行中

ROBOT_TEACHING 2 机器人示教中

ROBOT_IDLE_TO_RUNNING 101 机器人中间状态 空闲转换为运行

ROBOT_IDLE_TO_TEACHING 102 机器人中间状态 空闲转换为示教

ROBOT_RUNNING_TO_IDLE 103 机器人中间状态 运行转换为空闲

ROBOT_TEACHING_TO_IDLE 104 机器人中间状态 示教转换为空闲

控制器运行状态

名称 枚举值 描述

WRONG_DATA -1 未知的控制器状态

CTRL_INIT 0 控制器初始化

CTRL_ENGAGED 1 控制器使能

3.3 CtrlState

说明

导入

字段

using Agilebot.IR.Types;
c#

3 数据结构 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 24 / 284

名称 枚举值 描述

CTRL_ESTOP 2 控制器急停

CTRL_TERMINATED 3 控制器中止

CTRL_ANY_TO_ESTOP 101 控制器中间状态 其他转换为急停

CTRL_ESTOP_TO_ENGAGED 102 控制器中间状态 急停到使能

CTRL_ESTOP_TO_TERMINATED 103 控制器中间状态 急停到中止

伺服控制器状态

名称 枚举值 描述

WRONG_DATA -1 未知的伺服控制器状态

SERVO_IDLE 1 伺服控制器空闲

SERVO_RUNNING 2 伺服控制器运行中

SERVO_DISABLE 3 伺服控制器关闭

SERVO_WAIT_READY 4 伺服控制器等待就绪

SERVO_WAIT_DOWN 5 伺服控制器等待关闭

3.4 ServoState

说明

导入

字段

using Agilebot.IR.Types;
c#

3 数据结构 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 25 / 284

名称 枚举值 描述

SERVO_INIT 10 伺服控制器初始化

离线轨迹文件转换状态的枚举

名称 枚举值 描述

TRANSFORM_START 0 转换任务开始

TRANSFORM_RUNNING 1 转换任务执行中

TRANSFORM_SUCCESS 2 转换任务已完成

TRANSFORM_FAILED 3 转换任务失败

TRANSFORM_NOT_FOUND 4 转换任务没找到

TRANSFORM_UNKNOWN -1 未知的转换任务状态

以下是为 PayloadInfo 、 MassCenter 和 InertiaMoment 类生成的详细说明文档：

3.5 TransformStatusEnum

说明

导入

字段

3.6 PayloadInfo

using Agilebot.IR.Types;
c#

3 数据结构 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 26 / 284

PayloadInfo 类用于存储机器人的负载信息，包括负载编号、重量、质心和惯性矩等参数。这些信

息对于机器人在负载条件下的运动学和动力学分析至关重要，尤其是在进行路径规划和力矩计算

时。

属性 类型 描述

Id uint 负载编号，用于唯一标识不同的负载配置

Comment string 注释，用于描述负载的额外信息

Weight double 负载的重量（单位：千克）

MassCenter MassCenter 负载的质心位置（X、Y、Z 坐标）

InertiaMoment InertiaMoment 负载的惯性矩（LX、LY、LZ）

说明

导入

属性

示例

3.6.1 MassCenter

using Agilebot.IR.Motion;

PayloadInfo payload = new PayloadInfo

{

 Id = 1,

 Comment = "Sample Payload",

 Weight = 5.0,

 MassCenter = new MassCenter { X = 10.0, Y = 20.0, Z = 30.0 },

 InertiaMoment = new InertiaMoment { LX = 0.1, LY = 0.2, LZ = 0.3 }

};

c#

c#

3 数据结构 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 27 / 284

MassCenter 类用于表示负载的质心位置，包含 X、Y 和 Z 三个坐标轴的值。质心位置是负载在空

间中的几何中心，对于机器人运动控制和力矩计算非常重要。

属性 类型 描述

X double 质心的 X 坐标（单位：毫米）

Y double 质心的 Y 坐标（单位：毫米）

Z double 质心的 Z 坐标（单位：毫米）

InertiaMoment 类用于表示负载的惯性矩，包含 LX、LY 和 LZ 三个方向的值。惯性矩是负载在旋

转运动中抵抗变化的能力，对于机器人动力学分析和控制非常重要。

属性 类型 描述

LX double 惯性矩的 X 分量（单位：千克・毫米 ²）

LY double 惯性矩的 Y 分量（单位：千克・毫米 ²）

LZ double 惯性矩的 Z 分量（单位：千克・毫米 ²）

说明

导入

属性

3.6.2 InertiaMoment

说明

导入

属性

using Agilebot.IR.Motion;

using Agilebot.IR.Motion;

c#

c#

3 数据结构 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 28 / 284

离线轨迹文件转换状态的枚举

枚举值 值 描述

TRANSFORM_START 0 转换任务开始

TRANSFORM_RUNNING 1 转换任务执行中

TRANSFORM_SUCCESS 2 转换任务已完成

TRANSFORM_FAILED 3 转换任务失败

TRANSFORM_NOT_FOUND 4 转换任务未找到

TRANSFORM_UNKNOWN -1 数据错误，未知状态

TCS 坐标系类型

3.7 TransformState

说明

导入

字段

3.8 TCSType

说明

导入

using Agilebot.IR.Types;
c#

3 数据结构 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 29 / 284

名称 枚举值 描述

WRONG_TYPE -1 错误类型

JOINT 0 关节空间

BASE 1 基坐标系

WORLD 2 世界坐标系

USER 3 用户坐标系

TOOL 4 工具坐标系

RTCP_USER 5 RTCP 用户坐标系

RTCP_TOOL 6 RTCP 工具坐标系

描述机器人点位的结构 坐标数据中，XYZ 方向距离数据单位为毫米 （mm），角度数据单位为 度
（°），部分版本角度信息为弧度，详见功能列表返回结果说明。

字段

3.9 MotionPose

说明

导入

属性

using Agilebot.IR.Types;

using Agilebot.IR.Motion;

c#

c#

3 数据结构 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 30 / 284

属性 类型 描述

CartData BaseCartData 笛卡尔数据

Joint Joint 关节数据

Pt PoseType 点位类型，默认为 Unknown

示例

MotionPose motionPose = new MotionPose();

motionPose.Pt = PoseType.Cart;

motionPose.CartData.Position = new Position{

 X = 300,

 Y = 300,

 Z = 300,

 A = 0,

 B = 0,

 C = 0

};

motionPose.CartData.Posture = new Posture{

 WristFlip = 1,

 ArmUpDown = 1,

 ArmBackFront = 1,

 ArmLeftRight = 1,

 TurnCircle = new List<int>(9){0,0,0,0,0,0,0,0,0}

};

MotionPose motionPose2 = new MotionPose();

motionPose2.Pt = PoseType.Joint;

motionPose2.Joint = new Joint{

 J1 = 0,

 J2 = 0,

 J3 = 60,

 J4 = 60,

 J5 = 0,

 J6 = 0

};

c#

3 数据结构 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 31 / 284

描述机器人在笛卡尔坐标系中的空间位置和姿态信息。其中，空间坐标使用毫米（mm）为单位，
姿态信息包括腕部、臂部的姿态以及各个轴的回转数。

属性 类型 描述

Position Position 机器人的空间坐标（X, Y, Z, A, B, C）

Posture Posture 机器人的姿态信息（腕部、臂部姿态及轴的回转数）

3.10 BaseCartData

说明

导入

属性

示例

3.10.1 Position

说明

using Agilebot.IR.Types;

BaseCartData cartData = new BaseCartData();

cartData.Position.X = 100.0;

cartData.Position.Y = 200.0;

cartData.Position.Z = 300.0;

cartData.Posture.ArmUpDown = 1;

cartData.Posture.ArmBackFront = -1;

Console.WriteLine(cartData.ToString());

c#

c#

3 数据结构 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 32 / 284

描述机器人操作点的笛卡尔坐标系空间位置及旋转角度坐标。坐标数据中，X、Y、Z 方向的距离单
位为毫米（mm），A、B、C 方向的角度单位为度（°）。

属性 类型 描述

X double 笛卡尔坐标系 X 方向的距离（单位：毫米）

Y double 笛卡尔坐标系 Y 方向的距离（单位：毫米）

Z double 笛卡尔坐标系 Z 方向的距离（单位：毫米）

A double 笛卡尔坐标系 A 方向的角度（单位：度）

B double 笛卡尔坐标系 B 方向的角度（单位：度）

C double 笛卡尔坐标系 C 方向的角度（单位：度）

导入

属性

示例

3.10.2 Posture

说明

using Agilebot.IR.Types;

Position position = new Position();

position.X = 100.0;

position.Y = 200.0;

position.Z = 300.0;

position.A = 45.0;

position.B = 30.0;

position.C = 60.0;

Console.WriteLine(position.ToString());

c#

c#

3 数据结构 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 33 / 284

描述机器人的姿态信息，包括腕部、臂部的姿态以及各个轴的回转数。姿态信息用于定义机器人在

空间中的具体姿态。

属性 类型 描述

WristFlip int
腕部翻转姿态，取值范围为 - 1、0、1。在 6 轴机器人 J5 关节配置
中，值 = 1 表示腕向下翻转，值 =-1 表示腕向上翻转

ArmUpDown int

臂部上下姿态，取值范围为 - 1、0、1。在 6 轴机器人 J3 关节配置
中，值 = 1 表示手臂在上（前向条件下，3 轴在 4 轴到 2 轴连线上
方，3 轴关节角 <0），值 =-1 表示手臂在下（前向条件下，3 轴在 4
轴到 2 轴连线下方，3 轴关节角> 0）

ArmBackFront int

臂部前后姿态，取值范围为 - 1、0、1。在 6 轴机器人 J1 关节配置
中，值 = 1 表示手臂在前（协作面向前方，2 轴在 1 轴左侧的状态
下），值 =-1 表示手臂在后（协作面向前方，2 轴在 1 轴右侧的状态
下）

ArmLeftRight int
臂部左右姿态，取值范围为 - 1、0、1。在 4 轴 Scara 机器人 J2 关节配
置中，值 = 1 表示 Scara 手臂在右，值 =-1 表示 Scara 手臂在左

TurnCircle List<int>

各个轴的回转数，取值范围为 - 1、0、1。各轴处在 0° 姿势下，回转
数为 0。执行直线、圆弧动作时，目标点回转数自动选定，可能与示教
位置资料不同。各轴回转数 >=180 对应值 = 1 或更
大，-179.99~179.99 对应值 = 0，<=-180 对应值 =-1 或更小

导入

属性

示例

using Agilebot.IR.Types;

Posture posture = new Posture();

posture.TurnCircle = new List<int>(9){0,0,0,0,0,0,0,0,0}

posture.WristFlip = 1;

posture.ArmUpDown = 1;

posture.ArmBackFront = -1;

c#

c#

3 数据结构 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 34 / 284

以下是为 Joint 类生成的说明文档：

描述机器人各个关节的角度数据。每个关节的角度值用于定义机器人在关节空间中的具体位置。角

度单位通常为度（°），但具体单位需根据实际机器人系统确认。

属性 类型 描述

J1 double 机器人一轴的关节角度

J2 double 机器人二轴的关节角度

J3 double 机器人三轴的关节角度

J4 double 机器人四轴的关节角度

J5 double 机器人五轴的关节角度

J6 double 机器人六轴的关节角度

J7 double 机器人七轴的关节角度

J8 double 机器人八轴的关节角度

J9 double 机器人九轴的关节角度

3.11 Joint

说明

导入

属性

posture.ArmLeftRight = 1;

Console.WriteLine(posture.ToString());

using Agilebot.IR.Types;
c#

3 数据结构 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 35 / 284

关节角度的单位通常为度（°），但某些机器人系统可能使用弧度（rad）。请根据具体机器人
系统的文档确认单位。

关节角度的取值范围通常由机器人硬件限制，超出范围可能导致错误或损坏设备。

以下是为 PoseType 枚举生成的说明文档：

定义了机器人位姿数据的类型，用于区分数据是关节角度、笛卡尔空间坐标还是未知类型。该枚举

用于标识机器人位姿数据的格式，以便在程序中正确处理不同类型的数据。

示例

注意事项

3.12 PoseType

说明

导入

枚举值

Joint joint = new Joint();

joint.J1 = 45.0;

joint.J2 = 30.0;

joint.J3 = 60.0;

joint.J4 = 90.0;

joint.J5 = 120.0;

joint.J6 = 135.0;

joint.J7 = 150.0;

joint.J8 = 180.0;

joint.J9 = 225.0;

Console.WriteLine(joint.ToString());

using Agilebot.IR.Types;

c#

c#

3 数据结构 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 36 / 284

枚举值 描述

Unknown 未知类型，表示位姿数据类型未定义

Joint 关节角度数据类型，表示数据为关节角度

Cart 笛卡尔空间坐标数据类型，表示数据为笛卡尔坐标

以下是为 DHparam 类生成的说明文档：

DHparam 类用于描述机器人连杆的参数，基于 Denavit-Hartenberg 参数（D-H 参数）。这些参

数用于定义机器人关节之间的几何关系，是机器人运动学和动力学分析的基础。

属性 类型 描述

id uint 杆件的唯一标识符，用于区分不同的连杆

a double 杆件长度，表示相邻关节的轴向距离（单位：毫米）

alpha double 杆件扭角，表示相邻关节轴之间的夹角（单位：度或弧度）

d double 关节距离，表示沿当前关节轴到下一个关节的距离（单位：毫米）

offset double 关节转角偏移量，表示关节的初始角度偏移（单位：度或弧度）

3.13 DHparam

说明

导入

属性

构造函数

using Agilebot.IR.Types;
c#

3 数据结构 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 37 / 284

https://en.wikipedia.org/wiki/Denavit%E2%80%93Hartenberg_parameters

单位一致性： a 和 d 的单位应保持一致（通常为毫米），而 alpha 和 offset 的单位也应保
持一致（通常为度或弧度）。

角度单位：在某些机器人系统中，角度单位可能为弧度而非度。请根据实际需求确认并统一单
位。

D-H 参数的定义：D-H 参数的定义依赖于具体的机器人模型和坐标系约定。在使用 DHparam

类时，确保参数的定义与机器人的实际几何结构一致。

以下是为 CartStatus 、 JointStatus 和 DragStatus 类生成的详细说明文档：

CartStatus 类用于表示笛卡尔坐标系中各轴的状态。每个轴的状态用布尔值表示， true 表示轴

可用， false 表示轴不可用。此状态类通常用于机器人运动控制中，以判断某个轴是否可以正常

工作。

属性 类型 描述

X bool X 方向状态，默认为 true （可用）

Y bool Y 方向状态，默认为 true （可用）

注意事项

3.14 CartStatus

说明

导入

属性

public DHparam(uint id, double d, double a, double alpha, double offset)

using Agilebot.IR.Types;

c#

c#

3 数据结构 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 38 / 284

属性 类型 描述

Z bool Z 方向状态，默认为 true （可用）

A bool A 方向状态，默认为 true （可用）

B bool B 方向状态，默认为 true （可用）

C bool C 方向状态，默认为 true （可用）

JointStatus 类用于表示机械臂各关节的状态。每个关节的状态用布尔值表示， true 表示关节可

用， false 表示关节不可用。此状态类通常用于机器人运动控制中，以判断某个关节是否可以正

常工作。

属性 类型 描述

J1 bool 关节 1 状态，默认为 true （可用）

J2 bool 关节 2 状态，默认为 true （可用）

J3 bool 关节 3 状态，默认为 true （可用）

J4 bool 关节 4 状态，默认为 true （可用）

J5 bool 关节 5 状态，默认为 true （可用）

J6 bool 关节 6 状态，默认为 true （可用）

3.15 JointStatus

说明

导入

属性

using Agilebot.IR.Types;
c#

3 数据结构 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 39 / 284

属性 类型 描述

J7 bool 关节 7 状态，默认为 true （可用）

J8 bool 关节 8 状态，默认为 true （可用）

J9 bool 关节 9 状态，默认为 true （可用）

DragStatus 类用于表示机械臂的拖动状态，包含笛卡尔坐标系状态和关节状态。此外，还包含一

个标志位 IsContinuousDrag ，用于表示是否处于连续拖动模式。此状态类通常用于机器人拖动控

制中，以判断当前的拖动模式和各轴 / 关节的状态。

属性 类型 描述

CartStatus CartStatus 笛卡尔坐标系状态

JointStatus JointStatus 关节状态

IsContinuousDrag bool 是否处于连续拖动模式，默认为 false

3.16 DragStatus

说明

导入

属性

构造函数

using Agilebot.IR.Types;

public DragStatus()

c#

c#

3 数据结构 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 40 / 284

初始化 CartStatus 和 JointStatus ，并设置 IsContinuousDrag 为 false 。

ProgramPose 类用于表示程序中的一个位姿（姿态），可以是关节坐标或笛卡尔坐标。该类包含

位姿的唯一标识符、数据（关节或笛卡尔坐标信息）、名称和注释。通过此类，可以方便地管理和

操作机器人程序中的位姿信息。

属性 类型 描述

Id int 位姿的唯一标识符

PoseData ProgramPoseData 位姿的数据，包括关节或笛卡尔坐标信息

Name string 位姿的名称

Comment string 位姿的注释

示例

3.17 ProgramPose

说明

导入

属性

DragStatus dragStatus = new DragStatus();

dragStatus.CartStatus.X = false; // X轴不可用

dragStatus.JointStatus.J3 = false; // 关节3不可用

dragStatus.IsContinuousDrag = true; // 设置为连续拖动模式

Console.WriteLine($"X轴状态: {dragStatus.CartStatus.X}, 关节3状态: {dragStatus.Joint

Status.J3}, 是否连续拖动: {dragStatus.IsContinuousDrag}");

using Agilebot.IR.Types;

c#

c#

3 数据结构 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 41 / 284

初始化 Id 、 PoseData 、 Name 和 Comment 。

ProgramPoseData 类用于表示程序中的位姿数据，包含笛卡尔空间坐标和姿态信息、关节角度信

息以及位姿类型。通过此类，可以方便地存储和管理位姿的具体数据。

属性 类型 描述

CartData ProgramCartData 笛卡尔数据

Joint Joint 关节数据

Pt PoseType 点位类型，默认为 Unknown

构造函数

示例

3.17.1 ProgramPoseData

说明

导入

属性

public ProgramPose()

ProgramPose programPose = new ProgramPose();

programPose.Id = 1; // 设置位姿的唯一标识符

programPose.PoseData = new ProgramPoseData(); // 创建位姿数据

programPose.Name = "Pose1"; // 设置位姿名称

programPose.Comment = "这是一个示例位姿"; // 设置位姿注释

Console.WriteLine($"位姿ID: {programPose.Id}, 名称: {programPose.Name}, 注释: {progr

amPose.Comment}");

using Agilebot.IR.Types;

c#

c#

c#

3 数据结构 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 42 / 284

ProgramCartData 类用于表示程序的笛卡尔坐标系数据。它通过引用 BaseCartData 类来包含空间

坐标和姿态信息，并通过 Uf 和 Tf 的值来确定采用的坐标系类型。 Uf 表示用户坐标系（User

Frame）， Tf 表示工具坐标系（Tool Frame）。如果 Uf 和 Tf 的值为 -1 ，则表示使用系统的

默认坐标系。此类在机器人编程中用于定义和管理笛卡尔空间中的位姿信息。

属性 类型 描述

BaseCart BaseCartData 机器人的笛卡尔点位和姿态信息

Uf int 用户坐标系（User Frame）， -1 表示使用系统的坐标系

Tf int 工具坐标系（Tool Frame）， -1 表示使用系统的坐标系

FileType 枚举用于定义文件上传时允许的文件类型。它通过不同的枚举值来区分机器人程序文件

的来源和格式。此枚举在机器人编程环境中用于文件管理、上传和程序解析等场景，帮助系统正确

识别和处理不同类型的程序文件。

3.17.2 ProgramCartData

说明

导入

属性

3.18 FileType

说明

导入

using Agilebot.IR.Types;

using Agilebot.IR.Types;

c#

c#

3 数据结构 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 43 / 284

枚举值 描述

UserProgram 用户通过点选生成的程序文件，每个程序包含 .xml 和 .json 两个文件。

BlockProgram 用户通过积木块生成的程序文件，每个程序包含 .block 、 .xml 和 .json 文件。

TrajectoryProgram 离线轨迹程序文件，通常用于离线编程生成的路径规划文件。

SignalType 枚举用于定义机器人系统中支持的信号类型。它通过不同的枚举值来区分各种数字信

号和模拟信号的用途和来源。此枚举在机器人控制系统中用于信号配置、信号处理和逻辑判断等场

景，帮助系统准确识别和管理不同类型的信号。

枚举值 描述

DI 数字信号输入（Digital Input），用于接收外部数字信号。

DO 数字信号输出（Digital Output），用于控制外部设备或执行器。

RI 机器人手臂数字信号输入（Robot Input），用于接收机器人手腕部分的数字信号。

RO 机器人手臂数字信号输出（Robot Output），用于控制机器人手腕部分的执行器。

UI 用户数字信号输入（User Input），用于接收用户自定义的数字信号。

UO 用户数字信号输出（User Output），用于输出用户自定义的数字信号。

枚举值

3.19 SignalType

说明

导入

枚举值

using Agilebot.IR.Types;
c#

3 数据结构 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 44 / 284

枚举值 描述

TDI 工具数字信号输入（Tool Digital Input），用于接收工具端的数字信号。

TDO 工具数字信号输出（Tool Digital Output），用于控制工具端的执行器。

GI 组输入（Group Input），用于接收一组数字信号的组合输入。

GO 组输出（Group Output），用于输出一组数字信号的组合输出。

AI 模拟输入（Analog Input），用于接收连续变化的模拟信号。

AO 模拟输出（Analog Output），用于输出连续变化的模拟信号。

TAI 手腕模拟输入（Tool Analog Input），用于接收工具端的模拟信号。

PoseRegister 类用于表示 PR 寄存器中的位姿（姿态），可以是关节坐标或笛卡尔坐标。该类包含

位姿的唯一标识符、数据（关节或笛卡尔坐标信息）、名称和注释。通过此类，可以方便地管理和

操作机器人程序中的位姿信息。

属性 类型 描述

Id int 位姿的唯一标识符

PoseData PoseRegisterData 位姿的数据，包括关节或笛卡尔坐标信息

Name string 位姿的名称

3.20 PoseRegister

说明

导入

属性

using Agilebot.IR.Types;
c#

3 数据结构 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 45 / 284

属性 类型 描述

Comment string 位姿的注释

初始化 Id 、 PoseData 、 Name 和 Comment 。

PoseRegisterData 类用于表示 PR 寄存器中的位姿数据，包含笛卡尔空间坐标和姿态信息、关节角

度信息以及位姿类型。通过此类，可以方便地存储和管理位姿的具体数据。

属性 类型 描述

CartData BaseCartData 笛卡尔数据

构造函数

示例

3.20.1 PoseRegisterData

说明

导入

属性

public PoseRegister()

PoseRegister pose = new PoseRegister();

pose.Id = 1; // 设置位姿的唯一标识符

pose.PoseData = new PoseRegisterData(); // 创建位姿数据

pose.Name = "Pose1"; // 设置位姿名称

pose.Comment = "这是一个示例位姿"; // 设置位姿注释

Console.WriteLine($"位姿ID: {pose.Id}, 名称: {pose.Name}, 注释: {pose.Comment}");

using Agilebot.IR.Types;

c#

c#

c#

3 数据结构 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 46 / 284

属性 类型 描述

Joint Joint 关节数据

Pt PoseType 点位类型，默认为 Unknown

Coordinate 类用于表示机器人系统中的一个坐标系。它包含了坐标系的基本信息，如唯一标识符

（ID）、名称、备注、运动组编号以及具体的位姿数据。此类在机器人编程和控制系统中用于定义
和管理坐标系的具体位置和姿态信息，便于在程序中进行运动规划和路径控制。

属性 类型 描述

Id int 坐标系的唯一标识符。

Name string 坐标系的名称，用于标识和描述坐标系。

Comment string 坐标系的备注信息，用于进一步说明坐标系的用途或特点。

GroupId int 坐标系所属的运动组编号，用于分类管理坐标系。

Data Position 坐标系的具体位姿数据，包含位置和姿态信息。

3.22 Coordinate

说明

导入

属性

示例

using Agilebot.IR.Types;

// 创建一个 Coordinate 实例

Coordinate coordinate = new Coordinate

c#

c#

3 数据结构 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 47 / 284

CoordinateType 枚举用于定义坐标系的类型。它通过不同的枚举值来区分用户坐标系和工具坐标

系。此枚举在机器人编程和控制系统中用于明确指定坐标系的用途，帮助系统正确处理坐标系相关

的操作。

枚举值 描述

UserCoordinate 用户坐标系，用于定义用户自定义的坐标系。

ToolCoordinate 工具坐标系，用于定义工具（如末端执行器）的坐标系。

CoordSummary 类用于表示坐标系的概要信息。它包含坐标系的类型、唯一标识符、名称、注释

和组 ID 等信息。此类在机器人编程环境中用于管理和存储坐标系的元数据，便于在程序中快速访
问和操作坐标系。

3.22.1 CoordinateType

说明

导入

枚举值

3.22.2 CoordSummary

说明

导入

{

 Id = 1, // 设置唯一标识符

 Name = "UserCoordinate1", // 设置名称

 Comment = "这是一个用户自定义坐标系", // 设置备注

 GroupId = 1, // 设置运动组编号

 Data = new Position { X = 100, Y = 200, Z = 300, A = 45, B = 30, C = 60 } // 设

置位姿数据

};

using Agilebot.IR.Types;
c#

3 数据结构 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 48 / 284

属性 类型 描述

Type CoordinateType 坐标系类型，可以是用户坐标系或工具坐标系。

Id int 坐标系的唯一标识符。

Name string 坐标系的名称。

Comment string 坐标系的注释，用于描述坐标系的用途或特点。

GroupId int 坐标系所属的组 ID，用于分类管理坐标系。

属性

示例

using Agilebot.IR.Types;

// 创建一个 CoordSummary 实例

CoordSummary coordSummary = new CoordSummary

{

 Type = CoordinateType.UserCoordinate, // 设置为用户坐标系

 Id = 1, // 设置唯一标识符

 Name = "UserCoord1", // 设置名称

 Comment = "这是一个用户自定义坐标系", // 设置注释

 GroupId = 0 // 设置组ID

};

c#

c#

3 数据结构 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 49 / 284

4 方法与示例

4 方法与示例 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 50 / 284

方法名 Arm(string controllerIP , string teachPanelIP = null, bool localProxy = true)

描述
捷勃特机器人类构造函数，包含所有可用的机器人控制接口。需要先初始化并连接机器人

后才能使用其他功能

请求参数

controllerIP : string 机器人控制器 IP 地址
teachPanelIP : string 可选，示教器侧 IP；不提供时回退到 controllerIP

localProxy : bool 是否使用本地控制器代理服务，默认为 true。当为 true 时将在本地启动
控制器代理服务；当为 false 时则需要机器人控制器中已安装代理服务（需要机器人软件版
本 7.7 及以上）

返回值 StatusCode: 构造函数执行结果

兼容的机

器人软件

版本

协作 (Copper): v7.5.0.0+
工业 (Bronze): v7.5.0.0+

方法名 ConnectSync()

描述
建立与捷勃特机器人的网络连接。必须先调用 Arm 构造函数初始化机器人实
例

请求参数 无参数

返回值 StatusCode: 连接操作执行结果

兼容的机器人软件版

本

协作 (Copper): v7.5.0.0+
工业 (Bronze): v7.5.0.0+

4.1 机器人基础操作

4.1.1 连接机器人

4.1.2 判断与机械臂的连接是否有效

4.1 机器人基础操作 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 51 / 284

方法名 IsConnected()

描述 检查与机器人的网络连接状态是否有效

请求参数 无参数

返回值 bool: 连接状态，true 表示连接有效，false 表示连接失效或未连接

兼容的机器人软件版本
协作 (Copper): v7.5.0.0+
工业 (Bronze): v7.5.0.0+

方法名 DisconnectSync()

描述 断开与捷勃特机器人的网络连接，释放相关资源

请求参数 无参数

返回值 StatusCode: 断开连接操作执行结果

兼容的机器人软件版本
协作 (Copper): v7.5.0.0+
工业 (Bronze): v7.5.0.0+

示例代码

4.1.3 与机器人断开连接

Arm/Connect.cs

using Agilebot.IR;

public class Connect

{

 public static StatusCode Run(

 string controllerIP,

 bool useLocalProxy = true

)

 {

 // [ZH] 初始化捷勃特机器人

 // [EN] Initialize the Agilebot robot

 Arm controller = new Arm(

cs

4.1 机器人基础操作 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 52 / 284

 controllerIP,

 useLocalProxy

);

 // [ZH] 连接到捷勃特机器人

 // [EN] Connect to the Agilebot robot

 StatusCode code = controller.ConnectSync();

 if (code != StatusCode.OK)

 {

 Console.WriteLine(

 "Connect Robot Failed: "

 + code.GetDescription()

);

 return code;

 }

 try

 {

 // [ZH] 检查连接状态

 // [EN] Check the connection status

 var state = controller.IsConnected();

 Console.WriteLine("Connected: " + state);

 }

 catch (Exception ex)

 {

 Console.WriteLine(

 $"执行过程中发生异常/Exception occurred during execution: {ex.Messag

e}"

);

 code = StatusCode.OtherReason;

 }

 finally

 {

 // [ZH] 关闭连接

 // [EN] Close the connection

 StatusCode disconnectCode =

 controller.Disconnect();

 if (disconnectCode != StatusCode.OK)

 {

 Console.WriteLine(

 disconnectCode.GetDescription()

);

4.1 机器人基础操作 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 53 / 284

方法名 GetArmModelInfo()

描述 获取当前连接的捷勃特机器人型号信息

请求参数 无参数

返回值
string: 机器人型号字符串，例如 "GBT-C5A"
StatusCode: 获取操作执行结果

兼容的机器人软件版本
协作 (Copper): v7.5.0.0+
工业 (Bronze): v7.5.0.0+

示例代码

4.1.4 获取当前机器人型号

Arm/GetArmModelInfo.cs

 if (code == StatusCode.OK)

 code = disconnectCode;

 }

 }

 return code;

 }

}

using Agilebot.IR;

public class GetArmModelInfo

{

 public static StatusCode Run(

 string controllerIP,

 bool useLocalProxy = true

)

 {

 // [ZH] 初始化捷勃特机器人

 // [EN] Initialize the Agilebot robot

cs

4.1 机器人基础操作 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 54 / 284

 Arm controller = new Arm(

 controllerIP,

 useLocalProxy

);

 // [ZH] 连接到捷勃特机器人

 // [EN] Connect to the Agilebot robot

 StatusCode code = controller.ConnectSync();

 if (code != StatusCode.OK)

 {

 Console.WriteLine(

 "Connect Robot Failed: "

 + code.GetDescription()

);

 return code;

 }

 try

 {

 // [ZH] 获取机器人型号信息

 // [EN] Get the robot model information

 (string info, code) =

 controller.GetArmModelInfo();

 if (code != StatusCode.OK)

 {

 Console.WriteLine(

 "Get Robot Model Failed: "

 + code.GetDescription()

);

 }

 else

 {

 Console.WriteLine("Model: " + info);

 }

 }

 catch (Exception ex)

 {

 Console.WriteLine(

 $"执行过程中发生异常/Exception occurred during execution: {ex.Messag

e}"

);

 code = StatusCode.OtherReason;

4.1 机器人基础操作 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 55 / 284

方法名 GetRobotState()

描述 获取捷勃特机器人的当前运行状态

请求参数 无参数

返回值
RobotState: 机器人运行状态枚举值
StatusCode: 获取操作执行结果

兼容的机器人软件版本
协作 (Copper): v7.5.0.0+
工业 (Bronze): v7.5.0.0+

示例代码

4.1.5 获取机器人运行状态

Arm/GetRobotState.cs

 }

 finally

 {

 // [ZH] 关闭连接

 // [EN] Close the connection

 StatusCode disconnectCode =

 controller.Disconnect();

 if (disconnectCode != StatusCode.OK)

 {

 Console.WriteLine(

 disconnectCode.GetDescription()

);

 if (code == StatusCode.OK)

 code = disconnectCode;

 }

 }

 return code;

 }

}

4.1 机器人基础操作 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 56 / 284

using Agilebot.IR;

using Agilebot.IR.Types;

public class GetRobotState

{

 public static StatusCode Run(

 string controllerIP,

 bool useLocalProxy = true

)

 {

 // [ZH] 初始化捷勃特机器人

 // [EN] Initialize the Agilebot robot

 Arm controller = new Arm(

 controllerIP,

 useLocalProxy

);

 // [ZH] 连接捷勃特机器人

 // [EN] Connect to the Agilebot robot

 StatusCode code = controller.ConnectSync();

 if (code != StatusCode.OK)

 {

 Console.WriteLine(

 "Connect Robot Failed: "

 + code.GetDescription()

);

 return code;

 }

 try

 {

 // [ZH] 获取机器人运行状态

 // [EN] Get the robot running state

 (RobotState state, code) =

 controller.GetRobotState();

 if (code != StatusCode.OK)

 {

 Console.WriteLine(

 "Get RobotState Failed: "

 + code.GetDescription()

);

cs

4.1 机器人基础操作 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 57 / 284

4.1.6 获取当前控制器运行状态

 }

 else

 {

 Console.WriteLine("RobotState: " + state);

 }

 }

 catch (Exception ex)

 {

 Console.WriteLine(

 $"执行过程中发生异常/Exception occurred during execution: {ex.Messag

e}"

);

 code = StatusCode.OtherReason;

 }

 finally

 {

 // [ZH] 关闭连接

 // [EN] Close the connection

 StatusCode disconnectCode =

 controller.Disconnect();

 if (disconnectCode != StatusCode.OK)

 {

 Console.WriteLine(

 disconnectCode.GetDescription()

);

 if (code == StatusCode.OK)

 code = disconnectCode;

 }

 }

 return code;

 }

}

4.1 机器人基础操作 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 58 / 284

方法名 GetCtrlState()

描述 获取捷勃特机器人控制器的当前运行状态

请求参数 无参数

返回值
CtrlState: 控制器运行状态枚举值
StatusCode: 获取操作执行结果

兼容的机器人软件版本
协作 (Copper): v7.5.0.0+
工业 (Bronze): v7.5.0.0+

示例代码

Arm/GetCtrlState.cs

using Agilebot.IR;

using Agilebot.IR.Types;

public class GetCtrlState

{

 public static StatusCode Run(

 string controllerIP,

 bool useLocalProxy = true

)

 {

 // [ZH] 初始化捷勃特机器人

 // [EN] Initialize the Agilebot robot

 Arm controller = new Arm(

 controllerIP,

 useLocalProxy

);

 // [ZH] 连接捷勃特机器人

 // [EN] Connect to the Agilebot robot

 StatusCode code = controller.ConnectSync();

 if (code != StatusCode.OK)

 {

 Console.WriteLine(

 "Connect Robot Failed: "

 + code.GetDescription()

cs

4.1 机器人基础操作 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 59 / 284

);

 return code;

 }

 try

 {

 // [ZH] 获取控制器运行状态

 // [EN] Get the controller running state

 (CtrlState state, code) =

 controller.GetCtrlState();

 if (code != StatusCode.OK)

 {

 Console.WriteLine(

 "Get CtrlState Failed: "

 + code.GetDescription()

);

 }

 else

 {

 Console.WriteLine("CtrlState: " + state);

 }

 }

 catch (Exception ex)

 {

 Console.WriteLine(

 $"执行过程中发生异常/Exception occurred during execution: {ex.Messag

e}"

);

 code = StatusCode.OtherReason;

 }

 finally

 {

 // [ZH] 关闭连接

 // [EN] Close the connection

 StatusCode disconnectCode =

 controller.Disconnect();

 if (disconnectCode != StatusCode.OK)

 {

 Console.WriteLine(

 disconnectCode.GetDescription()

);

 if (code == StatusCode.OK)

4.1 机器人基础操作 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 60 / 284

方法名 GetServoState()

描述 获取捷勃特机器人伺服系统的当前状态

请求参数 无参数

返回值
ServoState: 伺服系统状态枚举值
StatusCode: 获取操作执行结果

兼容的机器人软件版本
协作 (Copper): v7.5.0.0+
工业 (Bronze): v7.5.0.0+

示例代码

4.1.7 获取当前伺服状态

Arm/GetServoState.cs

 code = disconnectCode;

 }

 }

 return code;

 }

}

using Agilebot.IR;

using Agilebot.IR.Types;

public class GetServoState

{

 public static StatusCode Run(

 string controllerIP,

 bool useLocalProxy = true

)

 {

 // [ZH] 初始化捷勃特机器人

 // [EN] Initialize the Agilebot robot

cs

4.1 机器人基础操作 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 61 / 284

 Arm controller = new Arm(

 controllerIP,

 useLocalProxy

);

 // [ZH] 连接捷勃特机器人

 // [EN] Connect to the Agilebot robot

 StatusCode code = controller.ConnectSync();

 if (code != StatusCode.OK)

 {

 Console.WriteLine(

 "Connect Robot Failed: "

 + code.GetDescription()

);

 return code;

 }

 try

 {

 // [ZH] 获取伺服运行状态

 // [EN] Get the servo operating state

 (ServoState state, code) =

 controller.GetServoState();

 if (code != StatusCode.OK)

 {

 Console.WriteLine(

 "Get ServoState Failed: "

 + code.GetDescription()

);

 }

 else

 {

 Console.WriteLine("ServoState: " + state);

 }

 }

 catch (Exception ex)

 {

 Console.WriteLine(

 $"执行过程中发生异常/Exception occurred during execution: {ex.Messag

e}"

);

 code = StatusCode.OtherReason;

4.1 机器人基础操作 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 62 / 284

方法名 GetVersion()

描述 获取捷勃特机器人控制器的软件版本信息

请求参数 无参数

返回值
string: 控制器软件版本字符串
StatusCode: 获取操作执行结果

兼容的机器人软件版本
协作 (Copper): v7.5.0.0+
工业 (Bronze): v7.5.0.0+

示例代码

4.1.8 获取机器人控制器版本

Arm/GetVersion.cs

 }

 finally

 {

 // [ZH] 关闭连接

 // [EN] Close the connection

 StatusCode disconnectCode =

 controller.Disconnect();

 if (disconnectCode != StatusCode.OK)

 {

 Console.WriteLine(

 disconnectCode.GetDescription()

);

 if (code == StatusCode.OK)

 code = disconnectCode;

 }

 }

 return code;

 }

}

4.1 机器人基础操作 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 63 / 284

using Agilebot.IR;

public class GetVersion

{

 public static StatusCode Run(

 string controllerIP,

 bool useLocalProxy = true

)

 {

 // [ZH] 初始化捷勃特机器人

 // [EN] Initialize the Agilebot robot

 Arm controller = new Arm(

 controllerIP,

 useLocalProxy

);

 // [ZH] 连接捷勃特机器人

 // [EN] Connect to the Agilebot robot

 StatusCode code = controller.ConnectSync();

 if (code != StatusCode.OK)

 {

 Console.WriteLine(

 "Connect Robot Failed: "

 + code.GetDescription()

);

 return code;

 }

 try

 {

 // [ZH] 获取机器人控制器版本

 // [EN] Get the robot controller version

 string version;

 (version, code) = controller.GetVersion();

 if (code != StatusCode.OK)

 {

 Console.WriteLine(

 "Get version Failed: "

 + code.GetDescription()

);

 }

cs

4.1 机器人基础操作 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 64 / 284

方法名 SwitchLedLight(bool mode)

描述 控制捷勃特机器人 LED 指示灯的开关状态

4.1.9 设置机器人的 LED 指示灯

 else

 {

 Console.WriteLine("Version: " + version);

 }

 }

 catch (Exception ex)

 {

 Console.WriteLine(

 $"执行过程中发生异常/Exception occurred during execution: {ex.Messag

e}"

);

 code = StatusCode.OtherReason;

 }

 finally

 {

 // [ZH] 关闭连接

 // [EN] Close the connection

 StatusCode disconnectCode =

 controller.Disconnect();

 if (disconnectCode != StatusCode.OK)

 {

 Console.WriteLine(

 disconnectCode.GetDescription()

);

 if (code == StatusCode.OK)

 code = disconnectCode;

 }

 }

 return code;

 }

}

4.1 机器人基础操作 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 65 / 284

方法名 SwitchLedLight(bool mode)

请求参数 mode : bool LED 指示灯控制模式，true 表示开启，false 表示关闭

返回值 StatusCode: 操作执行结果

兼容性 仅支持协作机器人，需要控制器版本 1.3.6 及以上，工业机器人不支持

兼容的机器人软件版本
协作 (Copper): v7.5.1.3+
工业 (Bronze): 不支持

示例代码

Arm/SwitchLedLight.cs

using Agilebot.IR;

public class SwitchLedLight

{

 public static StatusCode Run(

 string controllerIP,

 bool useLocalProxy = true

)

 {

 // [ZH] 初始化捷勃特机器人

 // [EN] Initialize the Agilebot robot

 Arm controller = new Arm(

 controllerIP,

 useLocalProxy

);

 // [ZH] 连接捷勃特机器人

 // [EN] Connect to the Agilebot robot

 StatusCode code = controller.ConnectSync();

 if (code != StatusCode.OK)

 {

 Console.WriteLine(

 "Connect Robot Failed: "

 + code.GetDescription()

);

 return code;

cs

4.1 机器人基础操作 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 66 / 284

 }

 try

 {

 // [ZH] 关闭灯光

 // [EN] Turn off the LED light

 code = controller.SwitchLedLight(false);

 if (code != StatusCode.OK)

 {

 Console.WriteLine(

 "Switch Led Failed: "

 + code.GetDescription()

);

 }

 else

 {

 Console.WriteLine("Switch Led Light Off.");

 }

 Thread.Sleep(2000);

 // [ZH] 打开灯光

 // [EN] Turn on the LED light

 code = controller.SwitchLedLight(true);

 if (code != StatusCode.OK)

 {

 Console.WriteLine(

 "Switch Led Failed: "

 + code.GetDescription()

);

 }

 else

 {

 Console.WriteLine("Switch Led Light On.");

 }

 }

 catch (Exception ex)

 {

 Console.WriteLine(

 $"执行过程中发生异常/Exception occurred during execution: {ex.Messag

e}"

);

4.1 机器人基础操作 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 67 / 284

方法名 ServoOn()

描述 启动捷勃特机器人的伺服系统，使机器人进入可控制状态

请求参数 无参数

返回值 StatusCode: 伺服启动操作执行结果

兼容的机器人软件版本
协作 (Copper): v7.5.0.0+
工业 (Bronze): v7.5.0.0+

4.1.10 机器人伺服启动

4.1.11 机器人伺服关闭

 code = StatusCode.OtherReason;

 }

 finally

 {

 // [ZH] 关闭连接

 // [EN] Disconnect from the robot

 StatusCode disconnectCode =

 controller.Disconnect();

 if (disconnectCode != StatusCode.OK)

 {

 Console.WriteLine(

 disconnectCode.GetDescription()

);

 if (code == StatusCode.OK)

 code = disconnectCode;

 }

 }

 return code;

 }

}

4.1 机器人基础操作 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 68 / 284

方法名 ServoOff()

描述 关闭捷勃特机器人的伺服系统，使机器人进入安全停止状态

请求参数 无参数

返回值 StatusCode: 伺服关闭操作执行结果

兼容的机器人软件版本
协作 (Copper): v7.5.0.0+
工业 (Bronze): v7.5.0.0+

方法名 ServoReset()

描述 重置捷勃特机器人的伺服系统，清除错误状态并准备重新启动

请求参数 无参数

返回值 StatusCode: 伺服重置操作执行结果

兼容的机器人软件版本
协作 (Copper): v7.5.0.0+
工业 (Bronze): v7.5.0.0+

示例代码

4.1.12 让机器人伺服重置

Arm/ServoOperation.cs

using Agilebot.IR;

public class ServoOperation

{

 public static StatusCode Run(

 string controllerIP,

 bool useLocalProxy = true

)

 {

 // [ZH] 初始化捷勃特机器人

 // [EN] Initialize the Agilebot robot

 Arm controller = new Arm(

cs

4.1 机器人基础操作 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 69 / 284

 controllerIP,

 useLocalProxy

);

 // [ZH] 连接捷勃特机器人

 // [EN] Connect to the Agilebot robot

 StatusCode code = controller.ConnectSync();

 if (code != StatusCode.OK)

 {

 Console.WriteLine(

 "Connect Robot Failed: "

 + code.GetDescription()

);

 return code;

 }

 try

 {

 // [ZH] 机械臂伺服重置

 // [EN] Reset the robot arm servo

 code = controller.ServoReset();

 if (code != StatusCode.OK)

 {

 Console.WriteLine(

 "Servo Reset Failed: "

 + code.GetDescription()

);

 }

 else

 {

 Console.WriteLine("Servo Reset Success.");

 }

 Thread.Sleep(3000);

 // [ZH] 机械臂伺服关闭

 // [EN] Turn off the robot arm servo

 code = controller.ServoOff();

 if (code != StatusCode.OK)

 {

 Console.WriteLine(

 "Servo Off Failed: "

4.1 机器人基础操作 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 70 / 284

 + code.GetDescription()

);

 }

 else

 {

 Console.WriteLine("Servo Off Success.");

 }

 Thread.Sleep(3000);

 // [ZH] 机械臂伺服打开

 // [EN] Turn on the robot arm servo

 code = controller.ServoOn();

 if (code != StatusCode.OK)

 {

 Console.WriteLine(

 "Servo On Failed: "

 + code.GetDescription()

);

 }

 else

 {

 Console.WriteLine("Servo On Success.");

 }

 Thread.Sleep(3000);

 }

 catch (Exception ex)

 {

 Console.WriteLine(

 $"执行过程中发生异常/Exception occurred during execution: {ex.Messag

e}"

);

 code = StatusCode.OtherReason;

 }

 finally

 {

 // [ZH] 关闭连接

 // [EN] Close the connection

 StatusCode disconnectCode =

 controller.Disconnect();

 if (disconnectCode != StatusCode.OK)

4.1 机器人基础操作 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 71 / 284

方法名 Estop()

描述 执行捷勃特机器人的紧急停止，立即停止所有运动并进入安全状态

请求参数 无参数

返回值 StatusCode: 紧急停止操作执行结果

兼容的机器人软件版本
协作 (Copper): v7.5.0.0+
工业 (Bronze): v7.5.0.0+

示例代码

4.1.13 机器人紧急停止

Arm/Estop.cs

 {

 Console.WriteLine(

 disconnectCode.GetDescription()

);

 if (code == StatusCode.OK)

 code = disconnectCode;

 }

 }

 return code;

 }

}

using Agilebot.IR;

public class Estop

{

 public static StatusCode Run(

 string controllerIP,

 bool useLocalProxy = true

)

cs

4.1 机器人基础操作 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 72 / 284

 {

 // [ZH] 初始化捷勃特机器人

 // [EN] Initialize the Agilebot robot

 Arm controller = new Arm(

 controllerIP,

 useLocalProxy

);

 // [ZH] 连接到捷勃特机器人

 // [EN] Connect to the Agilebot robot

 StatusCode code = controller.ConnectSync();

 if (code != StatusCode.OK)

 {

 Console.WriteLine(

 "Connect Robot Failed: "

 + code.GetDescription()

);

 return code;

 }

 try

 {

 // [ZH] 触发机器人急停

 // [EN] Trigger the robot emergency stop

 code = controller.Estop();

 if (code != StatusCode.OK)

 {

 Console.WriteLine(

 "Emergency Stop Failed: "

 + code.GetDescription()

);

 }

 else

 {

 Console.WriteLine("Emergency Stop Success");

 }

 }

 catch (Exception ex)

 {

 Console.WriteLine(

 $"执行过程中发生异常/Exception occurred during execution: {ex.Messag

e}"

4.1 机器人基础操作 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 73 / 284

);

 code = StatusCode.OtherReason;

 }

 finally

 {

 // [ZH] 关闭连接

 // [EN] Close the connection

 StatusCode disconnectCode =

 controller.Disconnect();

 if (disconnectCode != StatusCode.OK)

 {

 Console.WriteLine(

 disconnectCode.GetDescription()

);

 if (code == StatusCode.OK)

 code = disconnectCode;

 }

 }

 return code;

 }

}

4.1 机器人基础操作 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 74 / 284

方法名 Motion.GetOVC()

描述
获取当前机器人的 OVC（Overall Velocity Control）全局速度比率，比率范围为
0~1

请求参数 无

返回值
double: 全局速度比率值
StatusCode: 获取操作执行结果

兼容的机器人软件版

本

协作 (Copper): v7.5.0.0+
工业 (Bronze): v7.5.0.0+

方法名 Motion.GetOAC()

描述
获取当前机器人的 OAC（Overall Acceleration Control）全局加速度比率，比率范
围为 0~1.2

请求参数 无

返回值
double: 全局加速度比率值
StatusCode: 获取操作执行结果

兼容的机器人软件

版本

协作 (Copper): v7.5.0.0+
工业 (Bronze): v7.5.0.0+

4.2 机器人运动控制和状态

4.2.1 获取机器人参数

4.2.1.1 获取 OVC 全局速度比率

4.2.1.2 获取 OAC 全局加速度比率

4.2.1.3 获取当前使用的 TF

4.2 机器人运动控制和状态 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 75 / 284

方法名 Motion.GetTF()

描述 获取当前机器人使用的 TF（Tool Frame）工具坐标系序号，序号范围为 0~10

请求参数 无

返回值
int: TF 工具坐标系序号
StatusCode: 获取操作执行结果

兼容的机器人软件版本
协作 (Copper): v7.5.0.0+
工业 (Bronze): v7.5.0.0+

方法名 Motion.GetUF()

描述 获取当前机器人使用的 UF（User Frame）用户坐标系序号，序号范围为 0~10

请求参数 无

返回值
int: UF 用户坐标系序号
StatusCode: 获取操作执行结果

兼容的机器人软件版本
协作 (Copper): v7.5.0.0+
工业 (Bronze): v7.5.0.0+

方法名 Motion.GetTCS()

描述
获取当前机器人使用的 TCS（Teach Coordinate System）示教坐标系类型，具体
参见 TCSType

请求参数 无

返回值
TCSType: TCS 示教坐标系类型枚举值
StatusCode: 获取操作执行结果

兼容的机器人软件

版本

协作 (Copper): v7.5.0.0+
工业 (Bronze): v7.5.0.0+

示例代码

4.2.1.4 获取当前使用的 UF

4.2.1.5 获取当前使用的 TCS 示教坐标系

4.2 机器人运动控制和状态 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 76 / 284

Motion/GetMotionParameters.cs

using Agilebot.IR;

using Agilebot.IR.Types;

public class GetMotionParameters

{

 public static StatusCode Run(

 string controllerIP,

 bool useLocalProxy = true

)

 {

 // [ZH] 初始化捷勃特机器人

 // [EN] Initialize the Agilebot robot

 Arm controller = new Arm(

 controllerIP,

 useLocalProxy

);

 // [ZH] 连接捷勃特机器人

 // [EN] Connect to the Agilebot robot

 StatusCode code = controller.ConnectSync();

 Console.WriteLine(

 code != StatusCode.OK

 ? code.GetDescription()

 : "连接成功/Successfully connected."

);

 if (code != StatusCode.OK)

 {

 return code;

 }

 try

 {

 // [ZH] 获取 OVC 全局速度比率

 // [EN] Get OVC global speed ratio

 double ovc;

 (ovc, code) = controller.Motion.GetOVC();

 if (code == StatusCode.OK)

 {

cs

4.2 机器人运动控制和状态 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 77 / 284

 Console.WriteLine($"OVC = {ovc}");

 }

 else

 {

 Console.WriteLine(

 $"获取OVC失败: {code.GetDescription()}"

);

 }

 // [ZH] 获取 OAC 全局加速度比率

 // [EN] Get OAC global acceleration ratio

 double oac;

 (oac, code) = controller.Motion.GetOAC();

 if (code == StatusCode.OK)

 {

 Console.WriteLine($"OAC = {oac}");

 }

 else

 {

 Console.WriteLine(

 $"获取OAC失败: {code.GetDescription()}"

);

 }

 // [ZH] 获取当前使用的 TF

 // [EN] Get current TF (Tool Frame)

 int tf;

 (tf, code) = controller.Motion.GetTF();

 if (code == StatusCode.OK)

 {

 Console.WriteLine($"TF = {tf}");

 }

 else

 {

 Console.WriteLine(

 $"获取TF失败: {code.GetDescription()}"

);

 }

 // [ZH] 获取当前使用的 UF

 // [EN] Get current UF (User Frame)

 int uf;

4.2 机器人运动控制和状态 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 78 / 284

 (uf, code) = controller.Motion.GetUF();

 if (code == StatusCode.OK)

 {

 Console.WriteLine($"UF = {uf}");

 }

 else

 {

 Console.WriteLine(

 $"获取UF失败: {code.GetDescription()}"

);

 }

 // [ZH] 获取当前使用的 TCS 示教坐标系

 // [EN] Get current TCS teaching coordinate system

 TCSType tcs;

 (tcs, code) = controller.Motion.GetTCS();

 if (code == StatusCode.OK)

 {

 Console.WriteLine($"TCSType = {tcs}");

 }

 else

 {

 Console.WriteLine(

 $"获取TCS失败: {code.GetDescription()}"

);

 }

 // [ZH] 获取机器人软限位

 // [EN] Get robot soft limits

 List<List<double>> softLimit;

 (softLimit, code) =

 controller.Motion.GetUserSoftLimit();

 if (code == StatusCode.OK)

 {

 Console.WriteLine("软限位信息:");

 for (int i = 0; i < softLimit.Count; i++)

 {

 Console.WriteLine(

 $"轴{i + 1}: 下限={softLimit[i][0]}, 上限={softLimit[i][1]}"

);

 }

 }

4.2 机器人运动控制和状态 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 79 / 284

4.2.2 设置机器人参数

4.2.2.1 设置 OVC 全局速度比率

 else

 {

 Console.WriteLine(

 $"获取软限位失败: {code.GetDescription()}"

);

 }

 }

 catch (Exception ex)

 {

 Console.WriteLine(

 $"执行过程中发生异常/Exception occurred during execution: {ex.Messag

e}"

);

 code = StatusCode.OtherReason;

 }

 finally

 {

 // [ZH] 关闭连接

 // [EN] Close the connection

 StatusCode disconnectCode =

 controller.Disconnect();

 Console.WriteLine(

 disconnectCode != StatusCode.OK

 ? disconnectCode.GetDescription()

 : "Successfully disconnected."

);

 }

 return code;

 }

}

4.2 机器人运动控制和状态 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 80 / 284

方法名 Motion.SetOVC(double value)

描述 设置当前机器人的 OVC（Overall Velocity Control）全局速度比率

请求参数 value : double 速度比率，范围为 0~1

返回值 StatusCode: 设置操作执行结果

兼容的机器人软件版本
协作 (Copper): v7.5.0.0+
工业 (Bronze): v7.5.0.0+

方法名 Motion.SetOAC(double value)

描述 设置当前机器人的 OAC（Overall Acceleration Control）全局加速度比率

请求参数 value : double 加速度比率，范围为 0~1.2

返回值 StatusCode: 设置操作执行结果

兼容的机器人软件版本
协作 (Copper): v7.5.0.0+
工业 (Bronze): v7.5.0.0+

方法名 Motion.SetTF(int value)

描述 设置当前使用的 TF（Tool Frame）工具坐标系序号

请求参数 value : int TF 序号，范围为 0~10

返回值 StatusCode: 设置操作执行结果

兼容的机器人软件版本
协作 (Copper): v7.5.0.0+
工业 (Bronze): v7.5.0.0+

4.2.2.2 设置 OAC 全局加速度比率

4.2.2.3 设置当前使用的 TF 用户坐标系编号

4.2.2.4 设置当前使用的 UF 工具坐标系编号

4.2 机器人运动控制和状态 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 81 / 284

方法名 Motion.SetUF(int value)

描述 设置当前使用的 UF（User Frame）用户坐标系序号

请求参数 value : int UF 序号，范围为 0~10

返回值 StatusCode: 设置操作执行结果

兼容的机器人软件版本
协作 (Copper): v7.5.0.0+
工业 (Bronze): v7.5.0.0+

方法名 Motion.SetTCS(TCSType value)

描述 设置当前使用的 TCS（Teach Coordinate System）示教坐标系

请求参数 value : TCSType TCS 示教坐标系类型

返回值 StatusCode: 设置操作执行结果

兼容的机器人软件版本
协作 (Copper): v7.5.0.0+
工业 (Bronze): v7.5.0.0+

示例代码

4.2.2.5 设置当前使用的 TCS 示教坐标系

Motion/SetMotionParameters.cs

using Agilebot.IR;

using Agilebot.IR.Types;

public class SetMotionParameters

{

 public static StatusCode Run(

 string controllerIP,

 bool useLocalProxy = true

)

 {

 // [ZH] 初始化捷勃特机器人

 // [EN] Initialize the Agilebot robot

 Arm controller = new Arm(

cs

4.2 机器人运动控制和状态 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 82 / 284

 controllerIP,

 useLocalProxy

);

 // [ZH] 连接捷勃特机器人

 // [EN] Connect to the Agilebot robot

 StatusCode code = controller.ConnectSync();

 Console.WriteLine(

 code != StatusCode.OK

 ? code.GetDescription()

 : "连接成功/Successfully connected."

);

 if (code != StatusCode.OK)

 {

 return code;

 }

 try

 {

 // [ZH] 设置 OVC 全局速度比率

 // [EN] Set OVC global speed ratio

 code = controller.Motion.SetOVC(0.5);

 if (code == StatusCode.OK)

 {

 Console.WriteLine("设置OVC成功");

 }

 else

 {

 Console.WriteLine(

 $"设置OVC失败: {code.GetDescription()}"

);

 }

 // [ZH] 设置 OAC 全局加速度比率

 // [EN] Set OAC global acceleration ratio

 code = controller.Motion.SetOAC(0.8);

 if (code == StatusCode.OK)

 {

 Console.WriteLine("设置OAC成功");

 }

 else

4.2 机器人运动控制和状态 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 83 / 284

 {

 Console.WriteLine(

 $"设置OAC失败: {code.GetDescription()}"

);

 }

 // [ZH] 设置当前使用的 TF 用户坐标系编号

 // [EN] Set current TF (Tool Frame) user coordinate system number

 code = controller.Motion.SetTF(2);

 if (code == StatusCode.OK)

 {

 Console.WriteLine("设置TF成功");

 }

 else

 {

 Console.WriteLine(

 $"设置TF失败: {code.GetDescription()}"

);

 }

 // [ZH] 设置当前使用的 UF 工具坐标系编号

 // [EN] Set current UF (User Frame) tool coordinate system number

 code = controller.Motion.SetUF(1);

 if (code == StatusCode.OK)

 {

 Console.WriteLine("设置UF成功");

 }

 else

 {

 Console.WriteLine(

 $"设置UF失败: {code.GetDescription()}"

);

 }

 // [ZH] 设置当前使用的 TCS 示教坐标系

 // [EN] Set current TCS teaching coordinate system

 code = controller.Motion.SetTCS(TCSType.TOOL);

 if (code == StatusCode.OK)

 {

 Console.WriteLine("设置TCS成功");

 }

 else

4.2 机器人运动控制和状态 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 84 / 284

 {

 Console.WriteLine(

 $"设置TCS失败: {code.GetDescription()}"

);

 }

 // [ZH] 设置UDP位置控制的相关参数

 // [EN] Set UDP position control related parameters

 code =

 controller.Motion.SetPositionTrajectoryParams(

 10,

 20,

 10,

 10

);

 if (code == StatusCode.OK)

 {

 Console.WriteLine("设置位置控制参数成功");

 }

 else

 {

 Console.WriteLine(

 $"设置位置控制参数失败: {code.GetDescription()}"

);

 }

 }

 catch (Exception ex)

 {

 Console.WriteLine(

 $"执行过程中发生异常/Exception occurred during execution: {ex.Messag

e}"

);

 code = StatusCode.OtherReason;

 }

 finally

 {

 // [ZH] 关闭连接

 // [EN] Close the connection

 StatusCode disconnectCode =

 controller.Disconnect();

 Console.WriteLine(

 disconnectCode != StatusCode.OK

4.2 机器人运动控制和状态 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 85 / 284

方法名
Motion.ConvertCartToJoint(MotionPose pose , int ufIndex = 0, int
tfIndex = 0)

描述 将位姿数据从笛卡尔坐标转换为关节坐标

请求参数

pose : MotionPose 机器人的位姿数据
ufIndex : int 用户坐标系索引，默认为 0
tfIndex : int 工具坐标系索引，默认为 0

返回值
MotionPose: 转换后的机器人位姿数据
StatusCode: 转换操作执行结果

兼容的机器人软件版

本

协作 (Copper): v7.5.0.0+
工业 (Bronze): v7.5.0.0+

示例代码

4.2.3 将笛卡尔点位转换成关节值点位

Motion/ConvertCartToJoint.cs

 ? disconnectCode.GetDescription()

 : "Successfully disconnected."

);

 }

 return code;

 }

}

using Agilebot.IR;

using Agilebot.IR.Motion;

using Agilebot.IR.Types;

public class ConvertCartToJoint

{

 public static StatusCode Run(

 string controllerIP,

cs

4.2 机器人运动控制和状态 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 86 / 284

 bool useLocalProxy = true

)

 {

 // [ZH] 初始化捷勃特机器人

 // [EN] Initialize the Agilebot robot

 Arm controller = new Arm(

 controllerIP,

 useLocalProxy

);

 // [ZH] 连接捷勃特机器人

 // [EN] Connect to the Agilebot robot

 StatusCode code = controller.ConnectSync();

 Console.WriteLine(

 code != StatusCode.OK

 ? code.GetDescription()

 : "连接成功/Successfully connected."

);

 if (code != StatusCode.OK)

 {

 return code;

 }

 try

 {

 // [ZH] 创建笛卡尔位姿

 // [EN] Create Cartesian pose

 MotionPose motionPose = new MotionPose();

 motionPose.Pt = PoseType.Cart;

 motionPose.CartData.Position = new Position

 {

 X = 300,

 Y = 300,

 Z = 300,

 A = 0,

 B = 0,

 C = 0,

 };

 motionPose.CartData.Posture = new Posture

 {

 WristFlip = 1,

4.2 机器人运动控制和状态 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 87 / 284

 ArmUpDown = 1,

 ArmBackFront = 1,

 ArmLeftRight = 1,

 TurnCircle = new List<int>(9)

 {

 0,

 0,

 0,

 0,

 0,

 0,

 0,

 0,

 0,

 },

 };

 // [ZH] 将笛卡尔点位转换成关节值点位

 // [EN] Convert Cartesian pose to joint pose

 MotionPose convertPose;

 (convertPose, code) =

 controller.Motion.ConvertCartToJoint(

 motionPose

);

 if (code == StatusCode.OK)

 {

 Console.WriteLine("笛卡尔转关节成功:");

 Console.WriteLine(

 $"关节值: J1={convertPose.Joint.J1}, J2={convertPose.Joint.J2},

J3={convertPose.Joint.J3}, J4={convertPose.Joint.J4}, J5={convertPose.Joint.J5}, J6

={convertPose.Joint.J6}"

);

 }

 else

 {

 Console.WriteLine(

 $"笛卡尔转关节失败: {code.GetDescription()}"

);

 }

 }

 catch (Exception ex)

 {

4.2 机器人运动控制和状态 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 88 / 284

方法名
Motion.ConvertJointToCart(MotionPose pose , int ufIndex = 0, int
tfIndex = 0)

描述 将位姿数据从关节坐标转换为笛卡尔坐标

请求参数

pose : MotionPose 机器人的位姿数据
ufIndex : int 用户坐标系索引，默认为 0
tfIndex : int 工具坐标系索引，默认为 0

返回值
MotionPose: 转换后的机器人位姿数据
StatusCode: 转换操作执行结果

兼容的机器人软件版

本

协作 (Copper): v7.5.0.0+
工业 (Bronze): v7.5.0.0+

4.2.4 将关节值点位转换成笛卡尔点位

 Console.WriteLine(

 $"执行过程中发生异常/Exception occurred during execution: {ex.Messag

e}"

);

 code = StatusCode.OtherReason;

 }

 finally

 {

 // [ZH] 关闭连接

 // [EN] Close the connection

 StatusCode disconnectCode =

 controller.Disconnect();

 Console.WriteLine(

 disconnectCode != StatusCode.OK

 ? disconnectCode.GetDescription()

 : "Successfully disconnected."

);

 }

 return code;

 }

}

4.2 机器人运动控制和状态 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 89 / 284

示例代码

Motion/ConvertJointToCart.cs

using Agilebot.IR;

using Agilebot.IR.Motion;

using Agilebot.IR.Types;

public class ConvertJointToCart

{

 public static StatusCode Run(

 string controllerIP,

 bool useLocalProxy = true

)

 {

 // [ZH] 初始化捷勃特机器人

 // [EN] Initialize the Agilebot robot

 Arm controller = new Arm(

 controllerIP,

 useLocalProxy

);

 // [ZH] 连接捷勃特机器人

 // [EN] Connect to the Agilebot robot

 StatusCode code = controller.ConnectSync();

 Console.WriteLine(

 code != StatusCode.OK

 ? code.GetDescription()

 : "连接成功/Successfully connected."

);

 if (code != StatusCode.OK)

 {

 return code;

 }

 try

 {

 // [ZH] 创建关节位姿

 // [EN] Create joint pose

 MotionPose motionPose = new MotionPose();

cs

4.2 机器人运动控制和状态 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 90 / 284

 motionPose.Pt = PoseType.Joint;

 motionPose.Joint = new Joint

 {

 J1 = 0,

 J2 = 0,

 J3 = 60,

 J4 = 60,

 J5 = 0,

 J6 = 0,

 };

 // [ZH] 将关节值点位转换成笛卡尔点位

 // [EN] Convert joint pose to Cartesian pose

 MotionPose convertPose;

 (convertPose, code) =

 controller.Motion.ConvertJointToCart(

 motionPose

);

 if (code == StatusCode.OK)

 {

 Console.WriteLine("关节转笛卡尔成功:");

 Console.WriteLine(

 $"位置: X={convertPose.CartData.Position.X}, Y={convertPose.Car

tData.Position.Y}, Z={convertPose.CartData.Position.Z}"

);

 Console.WriteLine(

 $"姿态: A={convertPose.CartData.Position.A}, B={convertPose.Car

tData.Position.B}, C={convertPose.CartData.Position.C}"

);

 }

 else

 {

 Console.WriteLine(

 $"关节转笛卡尔失败: {code.GetDescription()}"

);

 }

 }

 catch (Exception ex)

 {

 Console.WriteLine(

 $"执行过程中发生异常/Exception occurred during execution: {ex.Messag

e}"

4.2 机器人运动控制和状态 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 91 / 284

方法名 Motion.MoveJoint(MotionPose pose , double vel = 1, double acc = 1)

描述 让机器人末端移动到指定位置，移动方式为最快路径（关节运动）

请求参数

pose : MotionPose 笛卡尔空间或关节坐标系上的目标位置坐标
vel : double 运动速度，范围为 0~1，表示最大速度的倍数
acc : double 加速度，范围为 0~1.2，表示最大加速度的倍数

返回值 StatusCode: 运动指令执行结果

兼容的机器人软件版本
协作 (Copper): v7.5.0.0+
工业 (Bronze): v7.5.0.0+

示例代码

4.2.5 机器人末端移动到指定的位置

Motion/MoveJoint.cs

);

 code = StatusCode.OtherReason;

 }

 finally

 {

 // [ZH] 关闭连接

 // [EN] Close the connection

 StatusCode disconnectCode =

 controller.Disconnect();

 Console.WriteLine(

 disconnectCode != StatusCode.OK

 ? disconnectCode.GetDescription()

 : "Successfully disconnected."

);

 }

 return code;

 }

}

4.2 机器人运动控制和状态 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 92 / 284

using Agilebot.IR;

using Agilebot.IR.Motion;

using Agilebot.IR.Types;

public class MoveJoint

{

 public static StatusCode Run(

 string controllerIP,

 bool useLocalProxy = true

)

 {

 // [ZH] 初始化捷勃特机器人

 // [EN] Initialize the Agilebot robot

 Arm controller = new Arm(

 controllerIP,

 useLocalProxy

);

 // [ZH] 连接捷勃特机器人

 // [EN] Connect to the Agilebot robot

 StatusCode code = controller.ConnectSync();

 Console.WriteLine(

 code != StatusCode.OK

 ? code.GetDescription()

 : "连接成功/Successfully connected."

);

 if (code != StatusCode.OK)

 {

 return code;

 }

 try

 {

 // [ZH] 创建关节位姿

 // [EN] Create joint pose

 MotionPose motionPose = new MotionPose();

 motionPose.Pt = PoseType.Joint;

 motionPose.Joint = new Joint

 {

 J1 = 10,

cs

4.2 机器人运动控制和状态 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 93 / 284

 J2 = 30,

 J3 = 30,

 J4 = 0,

 J5 = 0,

 J6 = 0,

 };

 // [ZH] 让机器人末端移动到指定的位置

 // [EN] Move robot end to specified position

 code = controller.Motion.MoveJoint(

 motionPose,

 0.5,

 0.8

);

 if (code == StatusCode.OK)

 {

 Console.WriteLine("关节运动请求成功");

 }

 else

 {

 Console.WriteLine(

 $"关节运动失败: {code.GetDescription()}"

);

 }

 }

 catch (Exception ex)

 {

 Console.WriteLine(

 $"执行过程中发生异常/Exception occurred during execution: {ex.Messag

e}"

);

 code = StatusCode.OtherReason;

 }

 finally

 {

 // [ZH] 关闭连接

 // [EN] Close the connection

 StatusCode disconnectCode =

 controller.Disconnect();

 Console.WriteLine(

 disconnectCode != StatusCode.OK

 ? disconnectCode.GetDescription()

4.2 机器人运动控制和状态 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 94 / 284

方法名 Motion.MoveLine(MotionPose pose , double vel = 100, double acc = 1)

描述 让机器人末端沿直线移动到指定位置，移动方式为两点之间的直线路径

请求参数

pose : MotionPose 笛卡尔空间或关节坐标系上的目标位置坐标
vel : double 运动速度，范围为 0~5000mm/s，表示机械臂末端移动速度
acc : double 加速度，范围为 0~1.2，表示最大加速度的倍数

返回值 StatusCode: 运动指令执行结果

兼容的机器人软件版本
协作 (Copper): v7.5.0.0+
工业 (Bronze): v7.5.0.0+

示例代码

4.2.6 让机器人末端沿直线移动到指定的位置

Motion/MoveLine.cs

 : "Successfully disconnected."

);

 }

 return code;

 }

}

using Agilebot.IR;

using Agilebot.IR.Motion;

using Agilebot.IR.Types;

public class MoveLine

{

 public static StatusCode Run(

 string controllerIP,

 bool useLocalProxy = true

)

 {

cs

4.2 机器人运动控制和状态 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 95 / 284

 // [ZH] 初始化捷勃特机器人

 // [EN] Initialize the Agilebot robot

 Arm controller = new Arm(

 controllerIP,

 useLocalProxy

);

 // [ZH] 连接捷勃特机器人

 // [EN] Connect to the Agilebot robot

 StatusCode code = controller.ConnectSync();

 Console.WriteLine(

 code != StatusCode.OK

 ? code.GetDescription()

 : "连接成功/Successfully connected."

);

 if (code != StatusCode.OK)

 {

 return code;

 }

 try

 {

 // [ZH] 创建关节位姿

 // [EN] Create joint pose

 MotionPose motionPose = new MotionPose();

 motionPose.Pt = PoseType.Joint;

 motionPose.Joint = new Joint

 {

 J1 = 20,

 J2 = 40,

 J3 = 40,

 J4 = 5,

 J5 = 5,

 J6 = 5,

 };

 // [ZH] 让机器人末端沿直线移动到指定的位置

 // [EN] Move robot end in straight line to specified position

 code = controller.Motion.MoveLine(

 motionPose,

 100,

4.2 机器人运动控制和状态 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 96 / 284

 1.0

);

 if (code == StatusCode.OK)

 {

 Console.WriteLine("直线运动请求成功");

 }

 else

 {

 Console.WriteLine(

 $"直线运动失败: {code.GetDescription()}"

);

 }

 }

 catch (Exception ex)

 {

 Console.WriteLine(

 $"执行过程中发生异常/Exception occurred during execution: {ex.Messag

e}"

);

 code = StatusCode.OtherReason;

 }

 finally

 {

 // [ZH] 关闭连接

 // [EN] Close the connection

 StatusCode disconnectCode =

 controller.Disconnect();

 Console.WriteLine(

 disconnectCode != StatusCode.OK

 ? disconnectCode.GetDescription()

 : "Successfully disconnected."

);

 }

 return code;

 }

}

4.2 机器人运动控制和状态 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 97 / 284

方法名
Motion.MoveCircle(MotionPose pose1 , MotionPose pose2 , double vel = 100,
double acc = 1)

描述 让机器人末端沿弧线移动到指定位置

请求参数

pose1 : MotionPose 机械臂运动的途径点位姿
pose2 : MotionPose 机械臂运动的终点位姿
vel : double 运动速度，范围为 0~5000mm/s，表示机械臂末端移动速度
acc : double 加速度，范围为 0~1.2，表示最大加速度的倍数

返回值 StatusCode: 运动指令执行结果

兼容的机器人软

件版本

协作 (Copper): v7.5.0.0+
工业 (Bronze): v7.5.0.0+

示例代码

4.2.7 机器人末端沿弧线移动到指定的位置

Motion/MoveCircle.cs

using Agilebot.IR;

using Agilebot.IR.Motion;

using Agilebot.IR.Types;

public class MoveCircle

{

 public static StatusCode Run(

 string controllerIP,

 bool useLocalProxy = true

)

 {

 // [ZH] 初始化捷勃特机器人

 // [EN] Initialize the Agilebot robot

 Arm controller = new Arm(

 controllerIP,

 useLocalProxy

);

 // [ZH] 连接捷勃特机器人

cs

4.2 机器人运动控制和状态 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 98 / 284

 // [EN] Connect to the Agilebot robot

 StatusCode code = controller.ConnectSync();

 Console.WriteLine(

 code != StatusCode.OK

 ? code.GetDescription()

 : "连接成功/Successfully connected."

);

 if (code != StatusCode.OK)

 {

 return code;

 }

 try

 {

 // [ZH] 创建第一个位姿（途径点）

 // [EN] Create first pose (waypoint)

 MotionPose motionPose1 = new MotionPose();

 motionPose1.Pt = PoseType.Joint;

 motionPose1.Joint = new Joint

 {

 J1 = 0,

 J2 = 0,

 J3 = 60,

 J4 = 60,

 J5 = 0,

 J6 = 0,

 };

 // [ZH] 创建第二个位姿（终点）

 // [EN] Create second pose (endpoint)

 MotionPose motionPose2 = new MotionPose();

 motionPose2.Pt = PoseType.Joint;

 motionPose2.Joint = new Joint

 {

 J1 = 0,

 J2 = 30,

 J3 = 70,

 J4 = 40,

 J5 = 0,

 J6 = 0,

 };

4.2 机器人运动控制和状态 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 99 / 284

 // [ZH] 让机器人末端沿弧线移动到指定的位置

 // [EN] Move robot end in arc to specified position

 code = controller.Motion.MoveCircle(

 motionPose1,

 motionPose2,

 100,

 1.0

);

 if (code == StatusCode.OK)

 {

 Console.WriteLine("弧线运动请求成功");

 }

 else

 {

 Console.WriteLine(

 $"弧线运动失败: {code.GetDescription()}"

);

 }

 }

 catch (Exception ex)

 {

 Console.WriteLine(

 $"执行过程中发生异常/Exception occurred during execution: {ex.Messag

e}"

);

 code = StatusCode.OtherReason;

 }

 finally

 {

 // [ZH] 关闭连接

 // [EN] Close the connection

 StatusCode disconnectCode =

 controller.Disconnect();

 Console.WriteLine(

 disconnectCode != StatusCode.OK

 ? disconnectCode.GetDescription()

 : "Successfully disconnected."

);

 }

 return code;

4.2 机器人运动控制和状态 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 100 / 284

方法名 Motion.GetCurrentPose(PoseType pt , int ufIndex = 0, int tfIndex = 0)

描述 获取机器人的当前位姿，可获取笛卡尔空间或关节坐标系下的位姿信息

请求参数

pt : PoseType 位姿类型
ufIndex : int 当使用 PoseType.CART 时需传入用户坐标系索引，默认为 0
tfIndex : int 当使用 PoseType.CART 时需传入工具坐标系索引，默认为 0

返回值
MotionPose: 机器人位姿数据
StatusCode: 获取操作执行结果

兼容的机器人软件版本
协作 (Copper): v7.5.0.0+
工业 (Bronze): v7.5.0.0+

示例代码

4.2.8 获取机器人的当前位姿

Motion/GetCurrentPose.cs

 }

}

using Agilebot.IR;

using Agilebot.IR.Motion;

using Agilebot.IR.Types;

public class GetCurrentPose

{

 public static StatusCode Run(

 string controllerIP,

 bool useLocalProxy = true

)

 {

 // [ZH] 初始化捷勃特机器人

 // [EN] Initialize the Agilebot robot

 Arm controller = new Arm(

 controllerIP,

cs

4.2 机器人运动控制和状态 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 101 / 284

 useLocalProxy

);

 // [ZH] 连接捷勃特机器人

 // [EN] Connect to the Agilebot robot

 StatusCode code = controller.ConnectSync();

 Console.WriteLine(

 code != StatusCode.OK

 ? code.GetDescription()

 : "连接成功/Successfully connected."

);

 if (code != StatusCode.OK)

 {

 return code;

 }

 try

 {

 // [ZH] 获取机器人的当前位姿（笛卡尔坐标）

 // [EN] Get robot current pose (Cartesian coordinates)

 MotionPose cartPose;

 (cartPose, code) =

 controller.Motion.GetCurrentPose(

 PoseType.Cart,

 0,

 0

);

 if (code == StatusCode.OK)

 {

 Console.WriteLine("当前笛卡尔位姿:");

 Console.WriteLine(

 $"位置: X={cartPose.CartData.Position.X}, Y={cartPose.CartData.

Position.Y}, Z={cartPose.CartData.Position.Z}"

);

 Console.WriteLine(

 $"姿态: A={cartPose.CartData.Position.A}, B={cartPose.CartData.

Position.B}, C={cartPose.CartData.Position.C}"

);

 }

 else

 {

4.2 机器人运动控制和状态 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 102 / 284

 Console.WriteLine(

 $"获取笛卡尔位姿失败: {code.GetDescription()}"

);

 }

 // [ZH] 获取机器人的当前位姿（关节坐标）

 // [EN] Get robot current pose (joint coordinates)

 MotionPose jointPose;

 (jointPose, code) =

 controller.Motion.GetCurrentPose(

 PoseType.Joint,

 0,

 0

);

 if (code == StatusCode.OK)

 {

 Console.WriteLine("当前关节位姿:");

 Console.WriteLine(

 $"关节值: J1={jointPose.Joint.J1}, J2={jointPose.Joint.J2}, J3=

{jointPose.Joint.J3}, J4={jointPose.Joint.J4}, J5={jointPose.Joint.J5}, J6={jointPo

se.Joint.J6}"

);

 }

 else

 {

 Console.WriteLine(

 $"获取关节位姿失败: {code.GetDescription()}"

);

 }

 }

 catch (Exception ex)

 {

 Console.WriteLine(

 $"执行过程中发生异常/Exception occurred during execution: {ex.Messag

e}"

);

 code = StatusCode.OtherReason;

 }

 finally

 {

 // [ZH] 关闭连接

 // [EN] Close the connection

4.2 机器人运动控制和状态 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 103 / 284

方法名 Motion.GetDHParam()

描述 获取机器人的 DH（Denavit-Hartenberg）参数

请求参数 无参数

返回值
List<DHparam>: DH 参数列表
StatusCode: 获取操作执行结果

兼容的机器人软件版本
协作 (Copper): v7.5.0.0+
工业 (Bronze): 不支持

示例代码

4.2.9 获取机器人的 DH 参数

Motion/GetDHParam.cs

 StatusCode disconnectCode =

 controller.Disconnect();

 Console.WriteLine(

 disconnectCode != StatusCode.OK

 ? disconnectCode.GetDescription()

 : "Successfully disconnected."

);

 }

 return code;

 }

}

using Agilebot.IR;

using Agilebot.IR.Types;

public class GetDHParam

{

 public static StatusCode Run(

 string controllerIP,

cs

4.2 机器人运动控制和状态 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 104 / 284

 bool useLocalProxy = true

)

 {

 // [ZH] 初始化捷勃特机器人

 // [EN] Initialize the Agilebot robot

 Arm controller = new Arm(

 controllerIP,

 useLocalProxy

);

 // [ZH] 连接捷勃特机器人

 // [EN] Connect to the Agilebot robot

 StatusCode code = controller.ConnectSync();

 Console.WriteLine(

 code != StatusCode.OK

 ? code.GetDescription()

 : "连接成功/Successfully connected."

);

 if (code != StatusCode.OK)

 {

 return code;

 }

 try

 {

 // [ZH] 获取机器人的DH参数

 // [EN] Get robot DH parameters

 List<DHparam> dhParamsList;

 (dhParamsList, code) =

 controller.Motion.GetDHParam(1);

 if (code == StatusCode.OK)

 {

 Console.WriteLine("获取DH参数成功:");

 for (int i = 0; i < dhParamsList.Count; i++)

 {

 var dh = dhParamsList[i];

 Console.WriteLine(

 $"轴{i + 1}: Alpha={dh.alpha}, A={dh.a}, D={dh.d}, Offset=

{dh.offset}"

);

 }

4.2 机器人运动控制和状态 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 105 / 284

方法名 Motion.SetDHParam(List<DHparam> dHparams)

描述 设置机器人的 DH（Denavit-Hartenberg）参数

4.2.10 设置机器人的 DH 参数

 }

 else

 {

 Console.WriteLine(

 $"获取DH参数失败: {code.GetDescription()}"

);

 }

 }

 catch (Exception ex)

 {

 Console.WriteLine(

 $"执行过程中发生异常/Exception occurred during execution: {ex.Messag

e}"

);

 code = StatusCode.OtherReason;

 }

 finally

 {

 // [ZH] 关闭连接

 // [EN] Close the connection

 StatusCode disconnectCode =

 controller.Disconnect();

 Console.WriteLine(

 disconnectCode != StatusCode.OK

 ? disconnectCode.GetDescription()

 : "Successfully disconnected."

);

 }

 return code;

 }

}

4.2 机器人运动控制和状态 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 106 / 284

方法名 Motion.SetDHParam(List<DHparam> dHparams)

请求参数 dHparams : List<DHparam> DH 参数列表

返回值 StatusCode: 设置操作执行结果

兼容的机器人软件版本
协作 (Copper): v7.5.0.0+
工业 (Bronze): 不支持

示例代码

Motion/SetDHParam.cs

using Agilebot.IR;

using Agilebot.IR.Types;

public class SetDHParam

{

 public static StatusCode Run(

 string controllerIP,

 bool useLocalProxy = true

)

 {

 // [ZH] 初始化捷勃特机器人

 // [EN] Initialize the Agilebot robot

 Arm controller = new Arm(

 controllerIP,

 useLocalProxy

);

 // [ZH] 连接捷勃特机器人

 // [EN] Connect to the Agilebot robot

 StatusCode code = controller.ConnectSync();

 Console.WriteLine(

 code != StatusCode.OK

 ? code.GetDescription()

 : "连接成功/Successfully connected."

);

 if (code != StatusCode.OK)

 {

cs

4.2 机器人运动控制和状态 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 107 / 284

 return code;

 }

 try

 {

 // [ZH] 先获取当前的DH参数

 // [EN] First get current DH parameters

 List<DHparam> dhParamsList;

 (dhParamsList, code) =

 controller.Motion.GetDHParam(1);

 if (code != StatusCode.OK)

 {

 Console.WriteLine(

 $"获取DH参数失败: {code.GetDescription()}"

);

 return code;

 }

 Console.WriteLine(

 "获取DH参数成功，准备设置相同的参数..."

);

 // [ZH] 设置DH参数（这里设置为相同的参数作为示例）

 // [EN] Set DH parameters (set same parameters as example)

 code = controller.Motion.SetDHParam(

 dhParamsList

);

 if (code == StatusCode.OK)

 {

 Console.WriteLine("设置DH参数成功");

 }

 else

 {

 Console.WriteLine(

 $"设置DH参数失败: {code.GetDescription()}"

);

 }

 }

 catch (Exception ex)

 {

 Console.WriteLine(

 $"执行过程中发生异常/Exception occurred during execution: {ex.Messag

4.2 机器人运动控制和状态 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 108 / 284

方法名 Motion.GetDragSet()

描述 获取当前机器人轴锁定状态，轴锁定只针对示教运动

请求参数 无参数

返回值
DragStatus: 轴锁定状态，True 表示该轴为可移动状态，False 表示被锁定
StatusCode: 获取操作执行结果

兼容的机器人软件版本
协作 (Copper): v7.5.0.0+
工业 (Bronze): 不支持

4.2.11 获取机器人轴锁定状态

4.2.12 设定机器人轴锁定状态

e}"

);

 code = StatusCode.OtherReason;

 }

 finally

 {

 // [ZH] 关闭连接

 // [EN] Close the connection

 StatusCode disconnectCode =

 controller.Disconnect();

 Console.WriteLine(

 disconnectCode != StatusCode.OK

 ? disconnectCode.GetDescription()

 : "Successfully disconnected."

);

 }

 return code;

 }

}

4.2 机器人运动控制和状态 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 109 / 284

方法名 Motion.SetDragSet(DragStatus dragStatus)

描述 设定当前机器人轴锁定状态，轴锁定只针对示教运动

请求参数 dragStatus : DragStatus 轴锁定状态，默认全部为 True: 解锁状态

返回值 StatusCode: 设置操作执行结果

兼容的机器人软件版本
协作 (Copper): v7.5.0.0+
工业 (Bronze): 不支持

方法名 Motion.EnableDrag(bool dragState)

描述 设定当前机器人是否启动拖动示教功能

请求参数
dragState : bool 机器人的拖动状态，true 表示进入拖动状态，false 表示退出拖
动状态

返回值 StatusCode: 设置操作执行结果

兼容的机器人软件版

本

协作 (Copper): v7.5.0.0+
工业 (Bronze): 不支持

示例代码

4.2.13 设定当前机器人是否启动拖动示教

Motion/DragControl.cs

using Agilebot.IR;

using Agilebot.IR.Motion;

using Agilebot.IR.Types;

public class DragControl

{

 public static StatusCode Run(

 string controllerIP,

 bool useLocalProxy = true

)

 {

cs

4.2 机器人运动控制和状态 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 110 / 284

 // [ZH] 初始化捷勃特机器人

 // [EN] Initialize the Agilebot robot

 Arm controller = new Arm(

 controllerIP,

 useLocalProxy

);

 // [ZH] 连接捷勃特机器人

 // [EN] Connect to the Agilebot robot

 StatusCode code = controller.ConnectSync();

 Console.WriteLine(

 code != StatusCode.OK

 ? code.GetDescription()

 : "连接成功/Successfully connected."

);

 if (code != StatusCode.OK)

 {

 return code;

 }

 try

 {

 // [ZH] 获取当前机器人的轴锁定状态

 // [EN] Get current robot axis lock status

 DragStatus dragStatus;

 (dragStatus, code) =

 controller.Motion.GetDragSet();

 if (code == StatusCode.OK)

 {

 Console.WriteLine("获取轴锁定状态成功:");

 Console.WriteLine(

 $"X轴: {dragStatus.CartStatus.X}, Y轴: {dragStatus.CartStatus.

Y}, Z轴: {dragStatus.CartStatus.Z}"

);

 Console.WriteLine(

 $"连续拖动: {dragStatus.IsContinuousDrag}"

);

 }

 else

 {

 Console.WriteLine(

4.2 机器人运动控制和状态 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 111 / 284

 $"获取轴锁定状态失败: {code.GetDescription()}"

);

 }

 // [ZH] 修改当前机器人的轴锁定状态

 // [EN] Modify current robot axis lock status

 if (code == StatusCode.OK)

 {

 dragStatus.CartStatus.X = false;

 dragStatus.IsContinuousDrag = true;

 code = controller.Motion.SetDragSet(

 dragStatus

);

 if (code == StatusCode.OK)

 {

 Console.WriteLine("设置轴锁定状态成功");

 }

 else

 {

 Console.WriteLine(

 $"设置轴锁定状态失败: {code.GetDescription()}"

);

 }

 }

 // [ZH] 启动拖动（注意：实际使用中需要谨慎）

 // [EN] Enable drag (Note: use with caution in practice)

 if (code == StatusCode.OK)

 {

 Console.WriteLine(

 "注意：启动拖动功能，请确保安全！"

);

 code = controller.Motion.EnableDrag(true);

 if (code == StatusCode.OK)

 {

 Console.WriteLine("启动拖动成功");

 // [ZH] 等待一段时间后停止拖动

 // [EN] Wait for a while then stop drag

 Console.WriteLine(

 "等待3秒后停止拖动..."

);

4.2 机器人运动控制和状态 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 112 / 284

 Thread.Sleep(3000);

 code = controller.Motion.EnableDrag(

 false

);

 if (code == StatusCode.OK)

 {

 Console.WriteLine("停止拖动成功");

 }

 else

 {

 Console.WriteLine(

 $"停止拖动失败: {code.GetDescription()}"

);

 }

 }

 else

 {

 Console.WriteLine(

 $"启动拖动失败: {code.GetDescription()}"

);

 }

 }

 }

 catch (Exception ex)

 {

 Console.WriteLine(

 $"执行过程中发生异常/Exception occurred during execution: {ex.Messag

e}"

);

 code = StatusCode.OtherReason;

 }

 finally

 {

 // [ZH] 关闭连接

 // [EN] Close the connection

 StatusCode disconnectCode =

 controller.Disconnect();

 Console.WriteLine(

 disconnectCode != StatusCode.OK

 ? disconnectCode.GetDescription()

 : "Successfully disconnected."

4.2 机器人运动控制和状态 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 113 / 284

方法名 Motion.EnterPositionControl()

描述 进入实时位置控制模式，允许对机器人进行精确的位置控制

请求参数 无

返回值 StatusCode: 模式切换操作执行结果

备注 在进入实时控制模式后，必须通过 UDP 发送控制指令

兼容的机器人软件版本
协作 (Copper): v7.5.2.0+
工业 (Bronze): 不支持

方法名 Motion.ExitPositionControl()

描述 退出实时位置控制模式，恢复默认的机器人控制状态

请求参数 无

返回值 StatusCode: 模式切换操作执行结果

备注 退出后，机器人将不再接受实时控制指令

兼容的机器人软件版本
协作 (Copper): v7.5.2.0+
工业 (Bronze): 不支持

4.2.14 进入实时位置控制模式

4.2.15 退出实时位置控制模式

);

 }

 return code;

 }

}

4.2 机器人运动控制和状态 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 114 / 284

方法名
Motion.SetUDPFeedbackParams(bool flag , string ip , int interval , int
feedbackType , List<int> DOList = null)

描述 配置机器人向指定 IP 地址推送数据的订阅参数

请求参数

flag : bool 是否开启 UDP 数据推送
ip : string 接收端的 IP 地址
interval : int 发送数据的间隔（单位：毫秒）
feedbackType : int 反馈数据格式（0：XML 格式）
DOList : List<int> 期望获取的 DO 信号列表（最多十个，可选）

返回值 StatusCode: 参数设置操作执行结果

备注 参数设置仅在 UDP 数据推送功能启用时有效

兼容的机器人

软件版本

协作 (Copper): v7.5.2.0+
工业 (Bronze): 不支持

示例代码

4.2.16 设置订阅参数

Motion/PositionControl.cs

using Agilebot.IR;

using Agilebot.IR.Motion;

using Agilebot.IR.Types;

public class PositionControl

{

 public static StatusCode Run(

 string controllerIP,

 bool useLocalProxy = true

)

 {

 // [ZH] 初始化捷勃特机器人

 // [EN] Initialize the Agilebot robot

 Arm controller = new Arm(

 controllerIP,

 useLocalProxy

cs

4.2 机器人运动控制和状态 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 115 / 284

);

 // [ZH] 连接捷勃特机器人

 // [EN] Connect to the Agilebot robot

 StatusCode code = controller.ConnectSync();

 Console.WriteLine(

 code != StatusCode.OK

 ? code.GetDescription()

 : "连接成功/Successfully connected."

);

 if (code != StatusCode.OK)

 {

 return code;

 }

 try

 {

 // [ZH] 设置UDP反馈参数

 // [EN] Set UDP feedback parameters

 code = controller.Motion.SetUDPFeedbackParams(

 true,

 "192.168.1.1",

 10,

 0

);

 if (code == StatusCode.OK)

 {

 Console.WriteLine("设置UDP反馈参数成功");

 }

 else

 {

 Console.WriteLine(

 $"设置UDP反馈参数失败: {code.GetDescription()}"

);

 }

 // [ZH] 进入实时位置控制模式

 // [EN] Enter real-time position control mode

 code = controller.Motion.EnterPositionControl();

 if (code == StatusCode.OK)

 {

4.2 机器人运动控制和状态 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 116 / 284

 Console.WriteLine(

 "进入实时位置控制模式成功"

);

 // [ZH] 在此可以插入发送UDP数据控制机器人的代码

 // [EN] Insert UDP data control code here

 Console.WriteLine(

 "注意：在实时位置控制模式下，需要通过UDP发送控制指令"

);

 Console.WriteLine("等待2秒...");

 Thread.Sleep(2000);

 // [ZH] 退出实时位置控制模式

 // [EN] Exit real-time position control mode

 code =

 controller.Motion.ExitPositionControl();

 if (code == StatusCode.OK)

 {

 Console.WriteLine(

 "退出实时位置控制模式成功"

);

 }

 else

 {

 Console.WriteLine(

 $"退出实时位置控制模式失败: {code.GetDescription()}"

);

 }

 }

 else

 {

 Console.WriteLine(

 $"进入实时位置控制模式失败: {code.GetDescription()}"

);

 }

 }

 catch (Exception ex)

 {

 Console.WriteLine(

 $"执行过程中发生异常/Exception occurred during execution: {ex.Messag

e}"

);

4.2 机器人运动控制和状态 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 117 / 284

名称 字段 描述

RIst: 笛卡尔位置 X 工具坐标系下 X 方向值，单位为毫米

Y 工具坐标系下 Y 方向值，单位为毫米

Z 工具坐标系下 Z 方向值，单位为毫米

A 工具坐标系下绕 X 方向旋转，单位为度

B 工具坐标系下绕 Y 方向旋转，单位为度

C 工具坐标系下绕 Z 方向旋转，单位为度

AIPos: 关节位置 A1-A6 六个关节的值，单位为角度

EIPos: 附加轴数据 EIPos 附加轴数据

WristBtnState: 手腕按键状态 按键状态 1 = 按键按下，0 = 按键抬起

DragModel 拖拽按键状态

推送数据说明

 code = StatusCode.OtherReason;

 }

 finally

 {

 // [ZH] 关闭连接

 // [EN] Close the connection

 StatusCode disconnectCode =

 controller.Disconnect();

 Console.WriteLine(

 disconnectCode != StatusCode.OK

 ? disconnectCode.GetDescription()

 : "Successfully disconnected."

);

 }

 return code;

 }

}

4.2 机器人运动控制和状态 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 118 / 284

名称 字段 描述

RecordJoint 示教记录按键状态

PauseResume 暂停恢复按键状态

Digout: DO 输出 Digout 数字输出（DO）的状态

ProgramStatus: 程序状态 ProgId 程序 ID

Status

解释器执行状态：

0 = INTERPRETER_IDLE
1 = INTERPRETER_EXECUTE
2 = INTERPRETER_PAUSED

Xpath 程序片段返回值，格式为 程序名:行号

IPOC: 时间戳 IPOC 时间戳

方法名 Motion.GetUserSoftLimit()

描述 获取当前机器人软限位信息

请求参数 无

返回值

List<List<double>>: 机器人软限位信息，列表第一层代表各轴，第二层代表每个轴
的下限位和上限位值

StatusCode: 获取操作执行结果

兼容的机器人软

件版本

协作 (Copper): v7.5.0.0+
工业 (Bronze): v7.5.0.0+

4.2.17 获取机器人软限位

4.2.18 指定 UDP 位置控制的相关参数

4.2 机器人运动控制和状态 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 119 / 284

方法名
Motion.SetPositionTrajectoryParams(int maxTimeoutCount , int timeout , double
wristElbowThreshold , double shoulderThreshold)

描述 设置 UDP 位置控制的相关参数

请求参数

maxTimeoutCount : int 最大超时次数
timeout : int 超时时间（即发送间隔，默认为 20ms）
wristElbowThreshold : double 腕 / 肘部接近奇异点的阈值
shoulderThreshold : double 接近肩部奇异点的阈值

返回值 StatusCode: 参数设置操作执行结果

兼容的机器

人软件版本

协作 (Copper): v7.5.0.0+
工业 (Bronze): v7.5.0.0+

方法名 Motion.Payload.GetCurrentPayload()

描述 获取当前激活的负载信息

请求参数 无

返回值
int: 当前激活负载的索引
StatusCode: 获取操作执行结果

兼容的机器人软件版本
协作 (Copper): v7.5.0.0+
工业 (Bronze): v7.5.0.0+

方法名 Motion.Payload.GetPayloadById(int index)

描述 根据索引获取对应的负载信息

请求参数 index : int 负载索引

4.2.19 负载相关接口

4.2.19.1 获取当前激活的负载

4.2.19.2 获取对应的负载

4.2 机器人运动控制和状态 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 120 / 284

方法名 Motion.Payload.GetPayloadById(int index)

返回值 StatusCode: 获取操作执行结果

兼容的机器人软件版本
协作 (Copper): v7.5.0.0+
工业 (Bronze): v7.5.0.0+

方法名 Motion.Payload.SetCurrentPayload(int index)

描述 激活指定索引的负载

请求参数 index : int 负载索引

返回值 StatusCode: 激活操作执行结果

兼容的机器人软件版本
协作 (Copper): v7.5.0.0+
工业 (Bronze): v7.5.0.0+

备注 负载 ID 必须是当前设备中存在的

方法名 Motion.Payload.GetAllPayloadInfo()

描述 获取所有负载的详细信息

请求参数 无

返回值
Dictionary<uint, string>: 负载信息字典
StatusCode: 获取操作执行结果

兼容的机器人软件版本
协作 (Copper): v7.5.0.0+
工业 (Bronze): v7.5.0.0+

方法名 Motion.Payload.AddPayload(PayloadInfo payload)

描述 添加新的负载

4.2.19.3 激活对应的负载

4.2.19.4 获取所有负载信息

4.2.19.5 添加负载

4.2 机器人运动控制和状态 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 121 / 284

方法名 Motion.Payload.AddPayload(PayloadInfo payload)

请求参数 payload : PayloadInfo 负载对象

返回值 StatusCode: 添加操作执行结果

备注 新的负载 ID 必须是当前设备中没有的且在 1~10 之间

兼容的机器人软件版本
协作 (Copper): v7.5.0.0+
工业 (Bronze): v7.5.0.0+

方法名 Motion.Payload.DeletePayload(int index)

描述 删除指定索引的负载

请求参数 index : int 负载索引

返回值 StatusCode: 删除操作执行结果

兼容的机器人软件

版本

协作 (Copper): v7.5.0.0+
工业 (Bronze): v7.5.0.0+

备注
注意：无法删除当前激活的负载，如果要删除激活的负载，请先激活其他负载再删

除当前负载

方法名 Motion.Payload.UpdatePayload(PayloadInfo payload)

描述 更新指定负载信息

请求参数 payload : PayloadInfo 负载对象

返回值 StatusCode: 更新操作执行结果

备注 负载 ID 必须是当前设备中存在的

兼容的机器人软件版本
协作 (Copper): v7.5.0.0+
工业 (Bronze): v7.5.0.0+

示例代码

4.2.19.6 删除指定负载

4.2.19.7 更新指定负载

4.2 机器人运动控制和状态 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 122 / 284

Motion/PayloadControl.cs

using Agilebot.IR;

using Agilebot.IR.Motion;

public class PayloadControl

{

 public static StatusCode Run(

 string controllerIP,

 bool useLocalProxy = true

)

 {

 // [ZH] 初始化捷勃特机器人

 // [EN] Initialize the Agilebot robot

 Arm controller = new Arm(

 controllerIP,

 useLocalProxy

);

 // [ZH] 连接捷勃特机器人

 // [EN] Connect to the Agilebot robot

 StatusCode code = controller.ConnectSync();

 Console.WriteLine(

 code != StatusCode.OK

 ? code.GetDescription()

 : "连接成功/Successfully connected."

);

 if (code != StatusCode.OK)

 {

 return code;

 }

 try

 {

 // [ZH] 获取负载列表

 // [EN] Get payload list

 Dictionary<int, string> payloadList;

 (payloadList, code) =

 controller.Motion.Payload.GetAllPayloadInfo();

 if (code == StatusCode.OK)

cs

4.2 机器人运动控制和状态 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 123 / 284

 {

 Console.WriteLine("获取负载列表成功:");

 foreach (var p in payloadList)

 {

 Console.WriteLine(

 $"负载ID: {p.Key}, 描述: {p.Value}"

);

 }

 }

 else

 {

 Console.WriteLine(

 $"获取负载列表失败: {code.GetDescription()}"

);

 }

 // [ZH] 获取当前激活的负载

 // [EN] Get current active payload

 int currentPayload;

 (currentPayload, code) =

 controller.Motion.Payload.GetCurrentPayload();

 if (code == StatusCode.OK)

 {

 Console.WriteLine(

 $"当前激活的负载ID: {currentPayload}"

);

 }

 else

 {

 Console.WriteLine(

 $"获取当前负载失败: {code.GetDescription()}"

);

 }

 // [ZH] 添加新负载

 // [EN] Add new payload

 PayloadInfo payload = new()

 {

 Id = 3,

 Comment = "测试负载",

 Weight = 1.0,

 MassCenter = new()

4.2 机器人运动控制和状态 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 124 / 284

 {

 X = 1,

 Y = 2,

 Z = 3,

 },

 InertiaMoment = new()

 {

 LX = 10,

 LY = 20,

 LZ = 30,

 },

 };

 code = controller.Motion.Payload.AddPayload(

 payload

);

 if (code == StatusCode.OK)

 {

 Console.WriteLine("添加负载成功");

 }

 else

 {

 Console.WriteLine(

 $"添加负载失败: {code.GetDescription()}"

);

 }

 // [ZH] 设置当前激活的负载

 // [EN] Set current active payload

 if (code == StatusCode.OK)

 {

 code =

 controller.Motion.Payload.SetCurrentPayload(

 3

);

 if (code == StatusCode.OK)

 {

 Console.WriteLine("设置当前负载成功");

 }

 else

 {

 Console.WriteLine(

4.2 机器人运动控制和状态 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 125 / 284

方法名 Motion.Payload.CheckAxisThreeHorizontal()

描述 检测 3 轴是否水平

请求参数 无

返回值
double: 3 轴的水平角度
StatusCode: 检测操作执行结果

4.2.19.8 检测 3 轴是否水平

 $"设置当前负载失败: {code.GetDescription()}"

);

 }

 }

 }

 catch (Exception ex)

 {

 Console.WriteLine(

 $"执行过程中发生异常/Exception occurred during execution: {ex.Messag

e}"

);

 code = StatusCode.OtherReason;

 }

 finally

 {

 // [ZH] 关闭连接

 // [EN] Close the connection

 StatusCode disconnectCode =

 controller.Disconnect();

 Console.WriteLine(

 disconnectCode != StatusCode.OK

 ? disconnectCode.GetDescription()

 : "Successfully disconnected."

);

 }

 return code;

 }

}

4.2 机器人运动控制和状态 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 126 / 284

方法名 Motion.Payload.CheckAxisThreeHorizontal()

兼容的机器人软件版本
协作 (Copper): v7.5.2.0+
工业 (Bronze): 不支持

备注 水平的角度必须在 - 1~1 之间才能进行负载测定

方法名 Motion.Payload.GetPayloadIdentifyState()

描述 获取负载测定的状态

请求参数 无

返回值
PayloadIdentifyState: 负载测定状态
StatusCode: 获取操作执行结果

兼容的机器人软件版本
协作 (Copper): v7.5.2.0+
工业 (Bronze): 不支持

方法名 Motion.Payload.StartPayloadIdentify(double weight , double angle)

描述 开始负载测定

请求参数
weight : double 负载重量（未知重量填 - 1）
angle : double 6 轴允许转动的角度（30-90 度）

返回值 StatusCode: 负载测定启动操作执行结果

兼容的机器人软件版本
协作 (Copper): v7.5.2.0+
工业 (Bronze): 不支持

备注 开始负载测定前必须先进入负载测定状态

4.2.19.9 获取负载测定状态

4.2.19.10 开始负载测定

4.2.19.11 获取负载测定结果

4.2 机器人运动控制和状态 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 127 / 284

方法名 Motion.Payload.PayloadIdentifyResult()

描述 获取负载测定的结果

请求参数 无

返回值
PayloadInfo: 负载测定结果
StatusCode: 获取操作执行结果

兼容的机器人软件版本
协作 (Copper): v7.5.2.0+
工业 (Bronze): 不支持

方法名
Motion.Payload.InterferenceCheckForPayloadIdentify(double weight , double
angle)

描述 开始负载测定的干涉检查，用于查看是否会发生碰撞

请求参数
weight : double 负载重量（未知重量填 - 1）
angle : double 6 轴允许转动的角度（30-90 度）

返回值 StatusCode: 干涉检查操作执行结果

兼容的机器人软

件版本

协作 (Copper): v7.5.2.0+
工业 (Bronze): 不支持

方法名 Motion.Payload.PayloadIdentifyStart()

描述 进入负载测定状态

请求参数 无

返回值 StatusCode: 状态切换操作执行结果

兼容的机器人软件版本
协作 (Copper): v7.5.2.0+
工业 (Bronze): 不支持

4.2.19.12 开始干涉检查

4.2.19.13 进入负载测定状态

4.2.19.14 结束负载测定状态

4.2 机器人运动控制和状态 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 128 / 284

方法名 Motion.Payload.PayloadIdentifyDone()

描述 结束负载测定状态

请求参数 无

返回值 StatusCode: 状态切换操作执行结果

兼容的机器人软件版本
协作 (Copper): v7.5.2.0+
工业 (Bronze): 不支持

方法名 Motion.Payload.PayloadIdentify(double weight = -1, double angle = 90)

描述
完整的负载测定流程，包含上述负载测定全部接口，无特殊需求负载测定只用该

接口即可

请求参数
weight : double 负载重量（未知重量填 - 1）
angle : double 6 轴允许转动的角度（30-90 度）

返回值
PayloadInfo: 负载测定结果
StatusCode: 负载测定操作执行结果

备注

返回的负载可以新增到机器人中或写入机器人中已有的某个负载

全流程步骤：

1. 进入负载测定状态
2. 开始负载测定
3. 获取负载测定结果
4. 结束负载测定状态

兼容的机器人软件

版本

协作 (Copper): v7.5.2.0+
工业 (Bronze): 不支持

示例代码

4.2.19.15 负载测定全流程

Motion/PayloadIdentify.cs

using Agilebot.IR;

using Agilebot.IR.Motion;

using Agilebot.IR.Types;

cs

4.2 机器人运动控制和状态 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 129 / 284

public class PayloadIdentify

{

 public static StatusCode Run(

 string controllerIP,

 bool useLocalProxy = true

)

 {

 // [ZH] 初始化捷勃特机器人

 // [EN] Initialize the Agilebot robot

 Arm controller = new Arm(

 controllerIP,

 useLocalProxy

);

 // [ZH] 连接捷勃特机器人

 // [EN] Connect to the Agilebot robot

 StatusCode code = controller.ConnectSync();

 Console.WriteLine(

 code != StatusCode.OK

 ? code.GetDescription()

 : "连接成功/Successfully connected."

);

 if (code != StatusCode.OK)

 {

 return code;

 }

 try

 {

 // [ZH] 获取机器人模式

 // [EN] Get robot mode

 (UserOpMode opMode, StatusCode opCode) =

 controller.GetOpMode();

 if (opCode == StatusCode.OK)

 {

 Console.WriteLine(

 $"当前机器人模式/Current robot mode: {opMode}"

);

 if (opMode != UserOpMode.AUTO)

 {

 Console.WriteLine(

4.2 机器人运动控制和状态 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 130 / 284

 $"负载测定执行必须在机器人自动模式下/Payload identification ex

ecution must be in automatic mode"

);

 return StatusCode.OtherReason;

 }

 }

 else

 {

 Console.WriteLine(

 $"获取机器人模式失败/Failed to get robot mode: {opCode.GetDescri

ption()}"

);

 }

 // [ZH] 检测3轴是否水平

 // [EN] Check if axis 3 is horizontal

 double horizontalAngle;

 (horizontalAngle, code) =

 controller.Motion.Payload.CheckAxisThreeHorizontal();

 if (code == StatusCode.OK)

 {

 Console.WriteLine(

 $"3轴水平角度: {horizontalAngle}"

);

 if (Math.Abs(horizontalAngle) > 1)

 {

 Console.WriteLine(

 "警告：3轴水平角度超出范围(-1~1)，无法进行负载测定"

);

 return StatusCode.OtherReason;

 }

 }

 else

 {

 Console.WriteLine(

 $"检测3轴水平失败: {code.GetDescription()}"

);

 }

 // [ZH] 获取负载测定状态

 // [EN] Get payload identification state

 PayloadIdentifyState identifyState;

4.2 机器人运动控制和状态 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 131 / 284

 (identifyState, code) =

 controller.Motion.Payload.GetPayloadIdentifyState();

 if (code == StatusCode.OK)

 {

 Console.WriteLine(

 $"负载测定状态: {identifyState}"

);

 }

 else

 {

 Console.WriteLine(

 $"获取负载测定状态失败: {code.GetDescription()}"

);

 }

 // [ZH] 执行完整的负载测定流程

 // [EN] Execute complete payload identification process

 PayloadInfo payload;

 (payload, code) =

 controller.Motion.Payload.PayloadIdentify(

 -1,

 90

);

 if (code == StatusCode.OK)

 {

 Console.WriteLine("负载测定成功:");

 Console.WriteLine(

 $"负载重量: {payload.Weight}"

);

 Console.WriteLine(

 $"质心位置: X={payload.MassCenter.X}, Y={payload.MassCenter.Y},

Z={payload.MassCenter.Z}"

);

 Console.WriteLine(

 $"惯性矩: LX={payload.InertiaMoment.LX}, LY={payload.InertiaMom

ent.LY}, LZ={payload.InertiaMoment.LZ}"

);

 // [ZH] 保存负载到机器人中

 // [EN] Save payload to robot

 payload.Id = 6;

 code = controller.Motion.Payload.AddPayload(

4.2 机器人运动控制和状态 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 132 / 284

 payload

);

 if (code == StatusCode.OK)

 {

 Console.WriteLine(

 "保存负载到机器人成功"

);

 }

 else

 {

 Console.WriteLine(

 $"保存负载失败: {code.GetDescription()}"

);

 }

 }

 else

 {

 Console.WriteLine(

 $"负载测定失败: {code.GetDescription()}"

);

 }

 }

 catch (Exception ex)

 {

 Console.WriteLine(

 $"执行过程中发生异常/Exception occurred during execution: {ex.Messag

e}"

);

 code = StatusCode.OtherReason;

 }

 finally

 {

 // [ZH] 关闭连接

 // [EN] Close the connection

 StatusCode disconnectCode =

 controller.Disconnect();

 Console.WriteLine(

 disconnectCode != StatusCode.OK

 ? disconnectCode.GetDescription()

 : "Successfully disconnected."

);

 }

4.2 机器人运动控制和状态 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 133 / 284

 return code;

 }

}

4.2 机器人运动控制和状态 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 134 / 284

方法名 Execution.Start(string programName)

描述 启动执行机器人控制器中指定的程序

请求参数 programName : string 需要执行的程序名称

返回值 StatusCode: 程序启动操作执行结果

兼容的机器人软件版本
协作 (Copper): v7.5.0.0+
工业 (Bronze): v7.5.0.0+

方法名 Execution.Stop(string programName = null)

描述 停止正在执行的程序或停止机器人当前正在执行的运动指令

请求参数
programName : string 需要停止的程序名称，默认为 null，表示停止当前正在运行
的程序或运动指令

返回值 StatusCode: 停止操作执行结果

兼容的机器人软

件版本

协作 (Copper): v7.5.0.0+
工业 (Bronze): v7.5.0.0+

4.3 机器人操作类

4.3.1 执行指定的程序

4.3.2 停止正在执行的程序

4.3.3 返回所有正在运行的程序详细信息

4.3 机器人操作类 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 135 / 284

方法名 Execution.AllRunningPrograms()

描述 获取所有正在运行程序的详细信息，信息包含程序 ID 和程序名称

请求参数 无参数

返回值
Dictionary<string, int>: 运行的程序 ID 和程序名列表
StatusCode: 获取操作执行结果

兼容的机器人软件版本
协作 (Copper): v7.5.0.0+
工业 (Bronze): v7.5.0.0+

方法名 Execution.Pause(string programName = null)

描述 暂停当前正在执行的程序或暂停当前机器人正在执行的运动

请求参数
programName : string 需要暂停的程序名称，不传参时默认控制当前运行程序或
正在执行的动作

返回值 StatusCode: 暂停操作执行结果

兼容的机器人软件

版本

协作 (Copper): v7.5.0.0+
工业 (Bronze): v7.5.0.0+

方法名 Execution.Resume(string programName = null)

描述 继续运行某个处于暂停状态的程序或恢复当前机器人处于暂停的运动

请求参数
programName : string 需要继续运行的程序名称，不传参时默认控制当前运行程序
或正在执行的动作

返回值 StatusCode: 恢复操作执行结果

兼容的机器人软 协作 (Copper): v7.5.0.0+

4.3.4 暂停程序运行

4.3.5 恢复程序运行

4.3 机器人操作类 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 136 / 284

方法名 Execution.Resume(string programName = null)

件版本 工业 (Bronze): v7.5.0.0+

示例代码

Execution/ProgramExecution.cs

using Agilebot.IR;

using Agilebot.IR.Types;

public class ProgramExecution

{

 /// <summary>

 /// 测试程序执行完整流程功能

 /// 验证程序的启动、暂停、恢复和停止等完整操作流程

 /// </summary>

 public static StatusCode Run(

 string controllerIP,

 bool useLocalProxy = true

)

 {

 // [ZH] 初始化捷勃特机器人

 // [EN] Initialize the Agilebot robot

 Arm controller = new Arm(

 controllerIP,

 useLocalProxy

);

 // [ZH] 连接捷勃特机器人

 // [EN] Connect to the Agilebot robot

 StatusCode code = controller.ConnectSync();

 Console.WriteLine(

 code != StatusCode.OK

 ? code.GetDescription()

 : "连接成功/Successfully connected."

);

 if (code != StatusCode.OK)

 {

 return code;

cs

4.3 机器人操作类 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 137 / 284

 }

 try

 {

 Console.WriteLine(

 "开始程序执行完整流程/Starting Program Execution Complete Flow"

);

 // [ZH] 获取测试文件路径

 // [EN] Get test file path

 string file_user_program = GetTestFilePath(

 "test_prog.xml"

);

 // [ZH] 设置程序名称

 // [EN] Set program name

 string progName = "test_prog";

 // [ZH] 上传用户程序文件

 // [EN] Upload user program file

 code = controller.FileManager.Upload(

 file_user_program,

 FileType.UserProgram,

 true

);

 if (code == StatusCode.OK)

 {

 Console.WriteLine(

 $"用户程序文件上传成功/User Program File Upload Success: {progNa

me}"

);

 }

 else

 {

 Console.WriteLine(

 $"用户程序文件上传失败/User Program File Upload Failed: {code.Ge

tDescription()}"

);

 return code;

 }

 // [ZH] 等待

4.3 机器人操作类 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 138 / 284

 // [EN] Wait

 Thread.Sleep(3000);

 // [ZH] 启动程序

 // [EN] Start program

 code = controller.Execution.Start(progName);

 if (code == StatusCode.OK)

 {

 Console.WriteLine(

 $"程序启动成功/Program Started Successfully: {progName}"

);

 }

 else

 {

 Console.WriteLine(

 $"程序启动失败/Program Start Failed: {code.GetDescription()}"

);

 return code;

 }

 Thread.Sleep(2000);

 // [ZH] 获取所有正在运行的程序列表

 // [EN] Get all running programs list

 Dictionary<string, int> progList;

 (progList, code) =

 controller.Execution.AllRunningPrograms();

 if (code == StatusCode.OK)

 {

 Console.WriteLine(

 "获取运行程序列表成功/Get Running Programs List Success"

);

 Console.WriteLine(

 $"运行程序数量/Running Programs Count: {progList.Count}"

);

 foreach (var prog in progList)

 {

 Console.WriteLine(

 $" 程序/Program: {prog.Key}, 状态/Status: {prog.Value}"

);

 }

 }

 else

4.3 机器人操作类 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 139 / 284

 {

 Console.WriteLine(

 $"获取运行程序列表失败/Get Running Programs List Failed: {code.G

etDescription()}"

);

 return code;

 }

 Thread.Sleep(2000);

 // [ZH] 暂停程序

 // [EN] Pause program

 code = controller.Execution.Pause(progName);

 if (code == StatusCode.OK)

 {

 Console.WriteLine(

 $"程序暂停成功/Program Paused Successfully: {progName}"

);

 }

 else

 {

 Console.WriteLine(

 $"程序暂停失败/Program Pause Failed: {code.GetDescription()}"

);

 return code;

 }

 Thread.Sleep(2000);

 // [ZH] 恢复程序

 // [EN] Resume program

 code = controller.Execution.Resume(progName);

 if (code == StatusCode.OK)

 {

 Console.WriteLine(

 $"程序恢复成功/Program Resumed Successfully: {progName}"

);

 }

 else

 {

 Console.WriteLine(

 $"程序恢复失败/Program Resume Failed: {code.GetDescription()}"

);

 return code;

4.3 机器人操作类 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 140 / 284

 }

 Thread.Sleep(2000);

 // [ZH] 停止程序

 // [EN] Stop program

 code = controller.Execution.Stop(progName);

 if (code == StatusCode.OK)

 {

 Console.WriteLine(

 $"程序停止成功/Program Stopped Successfully: {progName}"

);

 }

 else

 {

 Console.WriteLine(

 $"程序停止失败/Program Stop Failed: {code.GetDescription()}"

);

 return code;

 }

 // [ZH] 删除用户程序文件

 // [EN] Delete user program file

 code = controller.FileManager.Delete(

 progName,

 FileType.UserProgram

);

 if (code == StatusCode.OK)

 {

 Console.WriteLine(

 $"用户程序文件删除成功/User Program File Delete Success: {progNa

me}"

);

 }

 else

 {

 Console.WriteLine(

 $"用户程序文件删除失败/User Program File Delete Failed: {code.Ge

tDescription()}"

);

 return code;

 }

4.3 机器人操作类 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 141 / 284

 Console.WriteLine(

 "程序执行完整流程结束/Program Execution Complete Flow Test Complete

d"

);

 }

 catch (Exception ex)

 {

 Console.WriteLine(

 $"执行过程中发生异常/Exception occurred during execution: {ex.Messag

e}"

);

 code = StatusCode.OtherReason;

 }

 finally

 {

 // [ZH] 关闭连接

 // [EN] Close the connection

 StatusCode disconnectCode =

 controller.Disconnect();

 if (disconnectCode != StatusCode.OK)

 {

 Console.WriteLine(

 disconnectCode.GetDescription()

);

 if (code == StatusCode.OK)

 code = disconnectCode;

 }

 }

 return code;

 }

 /// <summary>

 /// 获取test_files文件夹中文件的路径示例方法

 /// 展示如何获取当前程序目录下的test_files文件夹中的文件路径

 /// </summary>

 private static string GetTestFilePath(string fileName)

 {

 // [ZH] 获取当前程序集的目录

 // [EN] Get current assembly directory

 string? codeFilePath =

 new System.Diagnostics.StackTrace(true)

4.3 机器人操作类 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 142 / 284

4.3.6 执行 BAS 脚本程序

 .GetFrame(0)

 ?.GetFileName();

 if (string.IsNullOrEmpty(codeFilePath))

 {

 throw new InvalidOperationException(

 "无法获取当前文件路径/Cannot get current file path"

);

 }

 string? codeDirectory = Path.GetDirectoryName(

 codeFilePath

);

 if (string.IsNullOrEmpty(codeDirectory))

 {

 throw new InvalidOperationException(

 "无法获取当前目录路径/Cannot get current directory path"

);

 }

 // [ZH] 构建test_files文件夹路径

 // [EN] Build test_files folder path

 string testFilesDirectory = Path.Combine(

 codeDirectory,

 "test_files"

);

 // [ZH] 构建文件完整路径

 // [EN] Build complete file path

 string filePath = Path.Combine(

 testFilesDirectory,

 fileName

);

 return filePath;

 }

}

4.3 机器人操作类 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 143 / 284

方法名 Execution.ExecuteBasScript(BasScript script)

描述 执行用户自定义的 BAS 脚本程序

请求参数 script : BasScript 用户自定义的 BAS 脚本程序

返回值 StatusCode: 脚本执行操作执行结果

备注 BAS 脚本程序的暂停、恢复、停止方法同普通程序

兼容的机器人软件版本

协作 (Copper): v7.5.2.0+
工业 (Bronze): 不支持
工业机器人: 7.6.0.0

示例代码

Execution/ExecuteBasScript.cs

using Agilebot.IR;

using Agilebot.IR.BasScript;

using Agilebot.IR.Execution;

using Agilebot.IR.Types;

public class ExecuteBasScript

{

 /// <summary>

 /// 测试执行Bas脚本功能

 /// 验证能否成功执行包含条件判断、运动控制和赋值操作的Bas脚本

 /// </summary>

 public static StatusCode Run(

 string controllerIP,

 bool useLocalProxy = true

)

 {

 // [ZH] 初始化捷勃特机器人

 // [EN] Initialize the Agilebot robot

 Arm controller = new Arm(

 controllerIP,

 useLocalProxy

);

 // [ZH] 连接捷勃特机器人

cs

4.3 机器人操作类 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 144 / 284

 // [EN] Connect to the Agilebot robot

 StatusCode code = controller.ConnectSync();

 Console.WriteLine(

 code != StatusCode.OK

 ? code.GetDescription()

 : "连接成功/Successfully connected."

);

 if (code != StatusCode.OK)

 {

 return code;

 }

 try

 {

 Console.WriteLine(

 "开始执行Bas脚本程序/Starting Execute BasScript"

);

 // [ZH] 创建BAS脚本程序

 // [EN] Create BAS script program

 BasScript script = new BasScript("test_bas");

 // [ZH] 添加条件判断到脚本

 // [EN] Add conditional statement to script

 code = script.Logical.IF(

 RegisterType.R,

 1,

 OtherType.VALUE,

 0

);

 if (code != StatusCode.OK)

 {

 Console.WriteLine(

 $"添加条件判断失败/Add Conditional Statement Failed: {code.GetDe

scription()}"

);

 return code;

 }

 // [ZH] 添加运动控制到脚本

 // [EN] Add motion control to script

4.3 机器人操作类 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 145 / 284

 BasScript.ExtraParam param =

 new BasScript.ExtraParam();

 param.Acceleration(80);

 code = script.Motion.MoveJoint(

 MovePoseType.PR,

 1,

 SpeedType.VALUE,

 30,

 SmoothType.SD,

 10,

 extraParam: param

);

 if (code != StatusCode.OK)

 {

 Console.WriteLine(

 $"添加运动控制失败/Add Motion Control Failed: {code.GetDescripti

on()}"

);

 return code;

 }

 // [ZH] 添加赋值操作到脚本

 // [EN] Add assignment operation to script

 code = script.AssignValue(AssignType.R, 1, 99);

 if (code != StatusCode.OK)

 {

 Console.WriteLine(

 $"添加赋值操作失败/Add Assignment Operation Failed: {code.GetDes

cription()}"

);

 return code;

 }

 // [ZH] 结束条件判断

 // [EN] End conditional statement

 code = script.Logical.END_IF();

 if (code != StatusCode.OK)

 {

 Console.WriteLine(

 $"结束条件判断失败/End Conditional Statement Failed: {code.GetDe

scription()}"

);

4.3 机器人操作类 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 146 / 284

 return code;

 }

 // [ZH] 等待上一个测试结束

 // [EN] Wait for previous test to end

 Thread.Sleep(1000);

 // [ZH] 执行BAS脚本程序

 // [EN] Execute BAS script program

 code = controller.Execution.ExecuteBasScript(

 script

);

 if (code == StatusCode.OK)

 {

 Console.WriteLine(

 "BAS脚本执行成功/Execute BasScript Success"

);

 Console.WriteLine(

 "脚本包含条件判断、运动控制和赋值操作/Script includes conditional

statements, motion control and assignment operations"

);

 }

 else

 {

 Console.WriteLine(

 $"BAS脚本执行失败/Execute BasScript Failed: {code.GetDescription

()}"

);

 }

 Console.WriteLine(

 "执行Bas脚本测试完成/Execute BasScript Test Completed"

);

 }

 catch (Exception ex)

 {

 Console.WriteLine(

 $"执行过程中发生异常/Exception occurred during execution: {ex.Messag

e}"

);

 code = StatusCode.OtherReason;

 }

4.3 机器人操作类 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 147 / 284

 finally

 {

 // [ZH] 关闭连接

 // [EN] Close the connection

 StatusCode disconnectCode =

 controller.Disconnect();

 if (disconnectCode != StatusCode.OK)

 {

 Console.WriteLine(

 disconnectCode.GetDescription()

);

 if (code == StatusCode.OK)

 code = disconnectCode;

 }

 }

 return code;

 }

}

4.3 机器人操作类 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 148 / 284

方法名
ProgramPoses.Read(string programName , int index , FileType ft =
FileType.UserProgram)

描述 读取指定程序中指定序号的位姿点数据

请求参数

programName : string 指定程序名称
index : int 指定位姿点的序号
ft : FileType 文件类型

返回值
ProgramPose 程序中的机器人位姿数据
StatusCode: 读取操作执行结果

兼容的机器人软件

版本

协作 (Copper): v7.5.0.0+
工业 (Bronze): v7.5.0.0+

示例代码

4.4 程序信息读写

4.4.1 获取指定程序中指定位姿点值

ProgramPoses/ReadProgramPose.cs

using Agilebot.IR;

using Agilebot.IR.ProgramPoses;

using Agilebot.IR.Types;

public class ReadProgramPose

{

 public static StatusCode Run(

 string controllerIP,

 bool useLocalProxy = true

)

 {

 // [ZH] 初始化捷勃特机器人

 // [EN] Initialize the Agilebot robot

 Arm controller = new Arm(

cs

4.4 程序信息读写 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 149 / 284

 controllerIP,

 useLocalProxy

);

 // [ZH] 连接捷勃特机器人

 // [EN] Connect to the Agilebot robot

 StatusCode code = controller.ConnectSync();

 Console.WriteLine(

 code != StatusCode.OK

 ? code.GetDescription()

 : "连接成功/Successfully connected."

);

 if (code != StatusCode.OK)

 {

 return code;

 }

 try

 {

 // [ZH] 设置程序名称和位姿点索引

 // [EN] Set program name and pose index

 string progName = "test_prog";

 int index = 1;

 // [ZH] 读取指定程序中指定位姿点值

 // [EN] Read specified pose value in specified program

 ProgramPose pose;

 (pose, code) = controller.ProgramPoses.Read(

 progName,

 index

);

 if (code == StatusCode.OK)

 {

 Console.WriteLine(

 "读取程序位姿点成功/Read Program Pose Success"

);

 Console.WriteLine(

 $"位姿信息/Pose Info: {pose}"

);

 }

 else

4.4 程序信息读写 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 150 / 284

4.4.2 修改指定程序中指定位姿点值

 {

 Console.WriteLine(

 $"读取程序位姿点失败/Read Program Pose Failed: {code.GetDescript

ion()}"

);

 }

 }

 catch (Exception ex)

 {

 Console.WriteLine(

 $"执行过程中发生异常/Exception occurred during execution: {ex.Messag

e}"

);

 code = StatusCode.OtherReason;

 }

 finally

 {

 // [ZH] 关闭连接

 // [EN] Close the connection

 StatusCode disconnectCode =

 controller.Disconnect();

 if (disconnectCode != StatusCode.OK)

 {

 Console.WriteLine(

 disconnectCode.GetDescription()

);

 if (code == StatusCode.OK)

 code = disconnectCode;

 }

 }

 return code;

 }

}

4.4 程序信息读写 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 151 / 284

方法名
ProgramPoses.Write(string programName , int index , ProgramPose value ,
FileType ft = FileType.UserProgram)

描述 修改指定程序中指定序号的位姿点数据

请求参数

programName : string 指定程序名称
index : int 指定位姿点的序号
value : ProgramPose 程序中的机器人位姿数据
ft : FileType 文件类型

返回值 StatusCode: 写入操作执行结果

兼容的机器人

软件版本

协作 (Copper): v7.5.0.0+
工业 (Bronze): v7.5.0.0+

示例代码

ProgramPoses/WriteProgramPose.cs

using Agilebot.IR;

using Agilebot.IR.ProgramPoses;

using Agilebot.IR.Types;

public class WriteProgramPose

{

 public static StatusCode Run(

 string controllerIP,

 bool useLocalProxy = true

)

 {

 // [ZH] 初始化捷勃特机器人

 // [EN] Initialize the Agilebot robot

 Arm controller = new Arm(

 controllerIP,

 useLocalProxy

);

 // [ZH] 连接捷勃特机器人

 // [EN] Connect to the Agilebot robot

 StatusCode code = controller.ConnectSync();

 Console.WriteLine(

cs

4.4 程序信息读写 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 152 / 284

 code != StatusCode.OK

 ? code.GetDescription()

 : "连接成功/Successfully connected."

);

 if (code != StatusCode.OK)

 {

 return code;

 }

 try

 {

 // [ZH] 设置程序名称和位姿点索引

 // [EN] Set program name and pose index

 string progName = "test_prog";

 int index = 2;

 // [ZH] 生成随机位姿点

 // [EN] Generate random pose

 ProgramPose rndPose =

 ProgramPose.GenerateRandomPose(index);

 // [ZH] 修改指定程序中指定位姿点值

 // [EN] Write specified pose value in specified program

 code = controller.ProgramPoses.Write(

 progName,

 index,

 rndPose

);

 if (code == StatusCode.OK)

 {

 Console.WriteLine(

 "写入程序位姿点成功/Write Program Pose Success"

);

 }

 else

 {

 Console.WriteLine(

 $"写入程序位姿点失败/Write Program Pose Failed: {code.GetDescrip

tion()}"

);

 }

4.4 程序信息读写 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 153 / 284

方法名
ProgramPoses.Add(string programName , int index , ProgramPose value ,
FileType ft = FileType.UserProgram)

描述 在指定程序中指定序号位置添加位姿点数据

请求参数 programName : string 指定程序名称
index : int 指定位姿点的序号

4.4.3 添加指定程序位姿点

 }

 catch (Exception ex)

 {

 Console.WriteLine(

 $"执行过程中发生异常/Exception occurred during execution: {ex.Messag

e}"

);

 code = StatusCode.OtherReason;

 }

 finally

 {

 // [ZH] 关闭连接

 // [EN] Close the connection

 StatusCode disconnectCode =

 controller.Disconnect();

 if (disconnectCode != StatusCode.OK)

 {

 Console.WriteLine(

 disconnectCode.GetDescription()

);

 if (code == StatusCode.OK)

 code = disconnectCode;

 }

 }

 return code;

 }

}

4.4 程序信息读写 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 154 / 284

方法名
ProgramPoses.Add(string programName , int index , ProgramPose value ,
FileType ft = FileType.UserProgram)

value : ProgramPose 程序中的机器人位姿数据
ft : FileType 文件类型

返回值 StatusCode: 添加操作执行结果

兼容的机器人

软件版本

协作 (Copper): v7.5.0.0+
工业 (Bronze): v7.5.0.0+

示例代码

ProgramPoses/AddProgramPose.cs

using Agilebot.IR;

using Agilebot.IR.ProgramPoses;

using Agilebot.IR.Types;

public class AddProgramPose

{

 public static StatusCode Run(

 string controllerIP,

 bool useLocalProxy = true

)

 {

 // [ZH] 初始化捷勃特机器人

 // [EN] Initialize the Agilebot robot

 Arm controller = new Arm(

 controllerIP,

 useLocalProxy

);

 // [ZH] 连接捷勃特机器人

 // [EN] Connect to the Agilebot robot

 StatusCode code = controller.ConnectSync();

 Console.WriteLine(

 code != StatusCode.OK

 ? code.GetDescription()

 : "连接成功/Successfully connected."

);

cs

4.4 程序信息读写 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 155 / 284

 if (code != StatusCode.OK)

 {

 return code;

 }

 try

 {

 // [ZH] 设置程序名称和位姿点索引

 // [EN] Set program name and pose index

 string progName = "test_prog";

 int index = 3;

 // [ZH] 生成随机位姿点

 // [EN] Generate random pose

 ProgramPose rndPose =

 ProgramPose.GenerateRandomPose(index);

 // [ZH] 添加指定程序中指定位姿点

 // [EN] Add specified pose in specified program

 code = controller.ProgramPoses.Add(

 progName,

 index,

 rndPose

);

 if (code == StatusCode.OK)

 {

 Console.WriteLine(

 "添加程序位姿点成功/Add Program Pose Success"

);

 }

 else

 {

 Console.WriteLine(

 $"添加程序位姿点失败/Add Program Pose Failed: {code.GetDescripti

on()}"

);

 }

 }

 catch (Exception ex)

 {

 Console.WriteLine(

 $"执行过程中发生异常/Exception occurred during execution: {ex.Messag

4.4 程序信息读写 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 156 / 284

方法名
ProgramPoses.Delete(string programName , int index , FileType ft =
FileType.UserProgram)

描述 删除指定程序中指定序号的位姿点

请求参数

programName : string 指定程序名称
index : int 指定位姿点的序号
ft : FileType 文件类型

返回值 StatusCode: 删除操作执行结果

兼容的机器人软件

版本

协作 (Copper): v7.5.0.0+
工业 (Bronze): v7.5.0.0+

4.4.4 删除指定程序中指定序号的位姿点

e}"

);

 code = StatusCode.OtherReason;

 }

 finally

 {

 // [ZH] 关闭连接

 // [EN] Close the connection

 StatusCode disconnectCode =

 controller.Disconnect();

 if (disconnectCode != StatusCode.OK)

 {

 Console.WriteLine(

 disconnectCode.GetDescription()

);

 if (code == StatusCode.OK)

 code = disconnectCode;

 }

 }

 return code;

 }

}

4.4 程序信息读写 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 157 / 284

示例代码

ProgramPoses/DeleteProgramPose.cs

using Agilebot.IR;

using Agilebot.IR.ProgramPoses;

using Agilebot.IR.Types;

public class DeleteProgramPose

{

 public static StatusCode Run(

 string controllerIP,

 bool useLocalProxy = true

)

 {

 // [ZH] 初始化捷勃特机器人

 // [EN] Initialize the Agilebot robot

 Arm controller = new Arm(

 controllerIP,

 useLocalProxy

);

 // [ZH] 连接捷勃特机器人

 // [EN] Connect to the Agilebot robot

 StatusCode code = controller.ConnectSync();

 Console.WriteLine(

 code != StatusCode.OK

 ? code.GetDescription()

 : "连接成功/Successfully connected."

);

 if (code != StatusCode.OK)

 {

 return code;

 }

 try

 {

 // [ZH] 设置程序名称和位姿点索引

 // [EN] Set program name and pose index

 string progName = "test_prog";

cs

4.4 程序信息读写 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 158 / 284

 int index = 3;

 // [ZH] 删除指定程序中指定位姿点

 // [EN] Delete specified pose in specified program

 code = controller.ProgramPoses.Delete(

 progName,

 index

);

 if (code == StatusCode.OK)

 {

 Console.WriteLine(

 "删除程序位姿点成功/Delete Program Pose Success"

);

 }

 else

 {

 Console.WriteLine(

 $"删除程序位姿点失败/Delete Program Pose Failed: {code.GetDescri

ption()}"

);

 }

 }

 catch (Exception ex)

 {

 Console.WriteLine(

 $"执行过程中发生异常/Exception occurred during execution: {ex.Messag

e}"

);

 code = StatusCode.OtherReason;

 }

 finally

 {

 // [ZH] 关闭连接

 // [EN] Close the connection

 StatusCode disconnectCode =

 controller.Disconnect();

 if (disconnectCode != StatusCode.OK)

 {

 Console.WriteLine(

 disconnectCode.GetDescription()

);

 if (code == StatusCode.OK)

4.4 程序信息读写 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 159 / 284

方法名
ProgramPoses.ReadAllPoses(string programName , FileType ft =
FileType.UserProgram)

描述 获取指定程序中所有的位姿点信息

请求参数
programName : string 指定程序名称
ft : FileType 文件类型

返回值
List<ProgramPose>: 位姿点数据列表
StatusCode: 获取操作执行结果

兼容的机器人软件

版本

协作 (Copper): v7.5.0.0+
工业 (Bronze): v7.5.0.0+

示例代码

4.4.5 获取指定程序中所有的位姿点

ProgramPoses/ReadAllProgramPoses.cs

 code = disconnectCode;

 }

 }

 return code;

 }

}

using Agilebot.IR;

using Agilebot.IR.ProgramPoses;

using Agilebot.IR.Types;

public class ReadAllProgramPoses

{

 public static StatusCode Run(

 string controllerIP,

 bool useLocalProxy = true

)

cs

4.4 程序信息读写 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 160 / 284

 {

 // [ZH] 初始化捷勃特机器人

 // [EN] Initialize the Agilebot robot

 Arm controller = new Arm(

 controllerIP,

 useLocalProxy

);

 // [ZH] 连接捷勃特机器人

 // [EN] Connect to the Agilebot robot

 StatusCode code = controller.ConnectSync();

 Console.WriteLine(

 code != StatusCode.OK

 ? code.GetDescription()

 : "连接成功/Successfully connected."

);

 if (code != StatusCode.OK)

 {

 return code;

 }

 try

 {

 // [ZH] 设置程序名称

 // [EN] Set program name

 string progName = "test_prog";

 // [ZH] 读取指定程序中所有位姿点

 // [EN] Read all poses in specified program

 List<ProgramPose> poses;

 (poses, code) =

 controller.ProgramPoses.ReadAllPoses(

 progName

);

 if (code == StatusCode.OK)

 {

 Console.WriteLine(

 "读取所有程序位姿点成功/Read All Program Poses Success"

);

 Console.WriteLine(

 $"位姿点数量/Number of poses: {poses.Count}"

4.4 程序信息读写 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 161 / 284

);

 for (int i = 0; i < poses.Count; i++)

 {

 Console.WriteLine(

 $"位姿点 {i + 1}/Pose {i + 1}: {poses[i]}"

);

 }

 }

 else

 {

 Console.WriteLine(

 $"读取所有程序位姿点失败/Read All Program Poses Failed: {code.Get

Description()}"

);

 }

 }

 catch (Exception ex)

 {

 Console.WriteLine(

 $"执行过程中发生异常/Exception occurred during execution: {ex.Messag

e}"

);

 code = StatusCode.OtherReason;

 }

 finally

 {

 // [ZH] 关闭连接

 // [EN] Close the connection

 StatusCode disconnectCode =

 controller.Disconnect();

 if (disconnectCode != StatusCode.OK)

 {

 Console.WriteLine(

 disconnectCode.GetDescription()

);

 if (code == StatusCode.OK)

 code = disconnectCode;

 }

 }

 return code;

4.4 程序信息读写 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 162 / 284

方法名 ProgramPoses.ConvertPose(ProgramPose pose , PoseType toType)

描述 将程序中机器人位姿点在关节坐标和笛卡尔空间坐标之间转换

请求参数
pose : ProgramPose 程序中的机器人位姿数据
toType : PoseType 希望转换后的坐标类型

返回值
ProgramPose: 转换后的位姿数据
StatusCode: 转换操作执行结果

兼容的机器人软件版本
协作 (Copper): v7.5.0.0+
工业 (Bronze): v7.5.0.0+

示例代码

4.4.6 机器人程序位姿点类型转换

ProgramPoses/ConvertProgramPose.cs

 }

}

using Agilebot.IR;

using Agilebot.IR.ProgramPoses;

using Agilebot.IR.Types;

public class ConvertProgramPose

{

 public static StatusCode Run(

 string controllerIP,

 bool useLocalProxy = true

)

 {

 // [ZH] 初始化捷勃特机器人

 // [EN] Initialize the Agilebot robot

 Arm controller = new Arm(

 controllerIP,

 useLocalProxy

cs

4.4 程序信息读写 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 163 / 284

);

 // [ZH] 连接捷勃特机器人

 // [EN] Connect to the Agilebot robot

 StatusCode code = controller.ConnectSync();

 Console.WriteLine(

 code != StatusCode.OK

 ? code.GetDescription()

 : "连接成功/Successfully connected."

);

 if (code != StatusCode.OK)

 {

 return code;

 }

 try

 {

 // [ZH] 设置程序名称和位姿点索引

 // [EN] Set program name and pose index

 string progName = "test_prog";

 int cartIndex = 1;

 // [ZH] 先读取一个位姿点

 // [EN] First read a pose

 ProgramPose cartPose;

 (cartPose, code) = controller.ProgramPoses.Read(

 progName,

 cartIndex

);

 if (code != StatusCode.OK)

 {

 Console.WriteLine(

 $"读取位姿点失败/Read Pose Failed: {code.GetDescription()}"

);

 return code;

 }

 // [ZH] 转换位姿点类型（从笛卡尔坐标转换为关节坐标）

 // [EN] Convert pose type (from Cartesian to Joint coordinates)

 ProgramPose pose;

 (pose, code) =

4.4 程序信息读写 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 164 / 284

 controller.ProgramPoses.ConvertPose(

 cartPose,

 PoseType.Joint

);

 if (code == StatusCode.OK)

 {

 Console.WriteLine(

 "转换程序位姿点成功/Convert Program Pose Success"

);

 Console.WriteLine(

 $"原始位姿/Original Pose: {cartPose}"

);

 Console.WriteLine(

 $"转换后位姿/Converted Pose: {pose}"

);

 }

 else

 {

 Console.WriteLine(

 $"转换程序位姿点失败/Convert Program Pose Failed: {code.GetDescr

iption()}"

);

 }

 }

 catch (Exception ex)

 {

 Console.WriteLine(

 $"执行过程中发生异常/Exception occurred during execution: {ex.Messag

e}"

);

 code = StatusCode.OtherReason;

 }

 finally

 {

 // [ZH] 关闭连接

 // [EN] Close the connection

 StatusCode disconnectCode =

 controller.Disconnect();

 if (disconnectCode != StatusCode.OK)

 {

 Console.WriteLine(

 disconnectCode.GetDescription()

4.4 程序信息读写 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 165 / 284

);

 if (code == StatusCode.OK)

 code = disconnectCode;

 }

 }

 return code;

 }

}

4.4 程序信息读写 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 166 / 284

方法名 Signals.Read(SignalType type , int index)

描述 读取指定类型指定端口的 IO 信号值

请求参数
type : SignalType 要读取的 IO 信号类型
index : int 要读取的 IO 端口序号，从 1 开始

返回值
int: IO 信号值，1 代表高电平，0 代表低电平
StatusCode: 读取操作执行结果

兼容的机器人软件版本
协作 (Copper): v7.5.0.0+
工业 (Bronze): v7.5.0.0+

示例代码

4.5 IO 信号

4.5.1 读取指定类型指定端口 IO 的值

Signals/ReadSignal.cs

using Agilebot.IR;

using Agilebot.IR.Types;

public class ReadSignal

{

 public static StatusCode Run(

 string controllerIP,

 bool useLocalProxy = true

)

 {

 // [ZH] 初始化捷勃特机器人

 // [EN] Initialize the Agilebot robot

 Arm controller = new Arm(

 controllerIP,

 useLocalProxy

);

cs

4.5 IO信号 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 167 / 284

 // [ZH] 连接捷勃特机器人

 // [EN] Connect to the Agilebot robot

 StatusCode code = controller.ConnectSync();

 Console.WriteLine(

 code != StatusCode.OK

 ? code.GetDescription()

 : "连接成功/Successfully connected."

);

 if (code != StatusCode.OK)

 {

 return code;

 }

 try

 {

 // [ZH] 设置IO信号类型和索引

 // [EN] Set IO signal type and index

 SignalType type = SignalType.DI;

 int index = 1;

 // [ZH] 读取指定类型指定端口IO的值

 // [EN] Read specified type and port IO value

 int res;

 (res, code) = controller.Signals.Read(

 type,

 index

);

 if (code == StatusCode.OK)

 {

 Console.WriteLine(

 "读取IO信号成功/Read Signal Success"

);

 Console.WriteLine(

 $"{type}：{index} 的值为/has value {res}"

);

 Console.WriteLine(

 $"信号状态/Signal Status: {(res == 1 ? "高电平/High Level" : "低

电平/Low Level")}"

);

 }

4.5 IO信号 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 168 / 284

4.5.2 写指定类型指定端口 IO 的值

 else

 {

 Console.WriteLine(

 $"读取IO信号失败/Read Signal Failed: {code.GetDescription()}"

);

 }

 }

 catch (Exception ex)

 {

 Console.WriteLine(

 $"执行过程中发生异常/Exception occurred during execution: {ex.Messag

e}"

);

 code = StatusCode.OtherReason;

 }

 finally

 {

 // [ZH] 关闭连接

 // [EN] Close the connection

 StatusCode disconnectCode =

 controller.Disconnect();

 if (disconnectCode != StatusCode.OK)

 {

 Console.WriteLine(

 disconnectCode.GetDescription()

);

 if (code == StatusCode.OK)

 code = disconnectCode;

 }

 }

 return code;

 }

}

4.5 IO信号 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 169 / 284

方法名 Signals.Write(SignalType type , int index , double value)

描述 写入指定类型指定端口的 IO 信号值

请求参数

type : SignalType 要写入的 IO 信号类型
index : int 要写入的 IO 端口序号，从 1 开始
value : double 要写入的信号值，1 代表高电平，0 代表低电平

返回值 StatusCode: 写入操作执行结果

兼容的机器人软件版本
协作 (Copper): v7.5.0.0+
工业 (Bronze): v7.5.0.0+

备注 UI/UO 信号只能读取不能写入

示例代码

Signals/WriteSignal.cs

using Agilebot.IR;

using Agilebot.IR.Types;

public class WriteSignal

{

 public static StatusCode Run(

 string controllerIP,

 bool useLocalProxy = true

)

 {

 // [ZH] 初始化捷勃特机器人

 // [EN] Initialize the Agilebot robot

 Arm controller = new Arm(

 controllerIP,

 useLocalProxy

);

 // [ZH] 连接捷勃特机器人

 // [EN] Connect to the Agilebot robot

 StatusCode code = controller.ConnectSync();

 Console.WriteLine(

 code != StatusCode.OK

 ? code.GetDescription()

cs

4.5 IO信号 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 170 / 284

 : "连接成功/Successfully connected."

);

 if (code != StatusCode.OK)

 {

 return code;

 }

 try

 {

 // [ZH] 设置IO信号类型、索引和值

 // [EN] Set IO signal type, index and value

 SignalType type = SignalType.DO;

 int index = 1;

 int value = 1;

 // [ZH] 写指定类型指定端口IO的值

 // [EN] Write specified type and port IO value

 code = controller.Signals.Write(

 type,

 index,

 value

);

 if (code == StatusCode.OK)

 {

 Console.WriteLine(

 "写入IO信号成功/Write Signal Success"

);

 Console.WriteLine(

 $"{type}：{index} 设置为/set to value {value}"

);

 Console.WriteLine(

 $"信号状态/Signal Status: {(value == 1 ? "高电平/High Level" :

"低电平/Low Level")}"

);

 }

 else

 {

 Console.WriteLine(

 $"写入IO信号失败/Write Signal Failed: {code.GetDescription()}"

);

 }

4.5 IO信号 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 171 / 284

方法名 Signals.MultiWrite(SignalType type , List<int> ioData)

描述 批量写入多个 DO 端口的值，参数为扁平化端口 - 值对。

请求参数
type : SignalType 仅支持 DO
ioData : List<int> 形如 [port1, state1, port2, state2, ...] ，长度需为偶数

返回值 StatusCode 写入执行结果

4.5.3 批量写入 DO 信号

 }

 catch (Exception ex)

 {

 Console.WriteLine(

 $"执行过程中发生异常/Exception occurred during execution: {ex.Messag

e}"

);

 code = StatusCode.OtherReason;

 }

 finally

 {

 // [ZH] 关闭连接

 // [EN] Close the connection

 StatusCode disconnectCode =

 controller.Disconnect();

 if (disconnectCode != StatusCode.OK)

 {

 Console.WriteLine(

 disconnectCode.GetDescription()

);

 if (code == StatusCode.OK)

 code = disconnectCode;

 }

 }

 return code;

 }

}

4.5 IO信号 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 172 / 284

方法名 Signals.MultiWrite(SignalType type , List<int> ioData)

兼容的机器人软件版本
协作 (Copper): v7.5.0.0+
工业 (Bronze): v7.5.0.0+

备注 仅支持 DO 批量写入；UI/UO 不支持写入，DI/RI 仅支持单点读取

示例代码

4.5.4 批量读取 DO 信号

using Agilebot.IR;

using Agilebot.IR.Types;

public class Test

{

 public static async Task Main()

 {

 string controllerIP = "10.27.1.254";

 Arm controller = new Arm(controllerIP);

 StatusCode code = await controller.Connect();

 Console.WriteLine(code != StatusCode.OK ? code.GetDescription() : "Successf

ully connected.");

 // 批量写入 DO1=1, DO2=0

 code = controller.Signals.MultiWrite(SignalType.DO, new List<int> { 1, 1,

2, 0 });

 Console.WriteLine(code != StatusCode.OK ? code.GetDescription() : "MultiWri

te Success");

 code = controller.Disconnect();

 Console.WriteLine(code != StatusCode.OK ? code.GetDescription() : "Successf

ully disconnected.");

 }

}

cs

4.5 IO信号 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 173 / 284

方法名 Signals.MultiRead(SignalType type , List<int> indexes)

描述 批量读取多个 DO 端口的值，返回顺序与输入索引一致。

请求参数
type : SignalType 仅支持 DO
indexes : List<int> 待读取的端口序号列表，至少包含一个端口

返回值 List<int> 端口值列表（顺序与输入一致）与 StatusCode

兼容的机器人软件版本
协作 (Copper): v7.5.0.0+
工业 (Bronze): v7.5.0.0+

备注 仅支持 DO 批量读取；UI/UO 不支持写入，DI/RI 仅支持单点读取

示例代码

using Agilebot.IR;

using Agilebot.IR.Types;

public class Test

{

 public static async Task Main()

 {

 string controllerIP = "10.27.1.254";

 Arm controller = new Arm(controllerIP);

 StatusCode code = await controller.Connect();

 Console.WriteLine(code != StatusCode.OK ? code.GetDescription() : "Successf

ully connected.");

 // 批量读取 DO1、DO2

 (List<int> values, StatusCode readCode) = controller.Signals.MultiRead(Sign

alType.DO, new List<int> { 1, 2 });

 if (readCode == StatusCode.OK)

 {

 Console.WriteLine($"MultiRead Success: DO1={values[0]}, DO2={values

[1]}");

 }

 code = controller.Disconnect();

 Console.WriteLine(code != StatusCode.OK ? code.GetDescription() : "Successf

ully disconnected.");

cs

4.5 IO信号 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 174 / 284

 }

}

4.5 IO信号 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 175 / 284

方法名 Registers.Read_R(int index)

描述 读取 R 数值寄存器的值

请求参数 index : int 要读取的 R 寄存器编号

返回值
double: R 寄存器数值
StatusCode: 读取操作执行结果

兼容的机器人软件版本
协作机器人: 7.6.0.1
工业机器人: 7.6.0.0

方法名 Registers.Write_R(int index , double value)

描述 写入 R 数值寄存器的值

请求参数
index : int 要写入的 R 寄存器编号
value : double 要写入的 R 寄存器数值

返回值 StatusCode: 写入操作执行结果

兼容的机器人软件版本
协作机器人: 7.6.0.1
工业机器人: 7.6.0.0

4.6 寄存器信息

4.6.1 R 数值寄存器相关操作

4.6.1.1 获取一个 R 寄存器的值

4.6.1.2 写入一个 R 寄存器的值

4.6.1.3 删除一个 R 寄存器

4.6 寄存器信息 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 176 / 284

方法名 Registers.Delete_R(int index)

描述 删除指定的 R 数值寄存器

请求参数 index : int 要删除的 R 寄存器编号

返回值 StatusCode: 删除操作执行结果

兼容的机器人软件版本
协作 (Copper): v7.5.0.0+
工业 (Bronze): v7.5.0.0+

示例代码

Registers/RRegisterOperations.cs

using Agilebot.IR;

using Agilebot.IR.Types;

public class RRegisterOperations

{

 public static StatusCode Run(

 string controllerIP,

 bool useLocalProxy = true

)

 {

 // [ZH] 初始化捷勃特机器人

 // [EN] Initialize the Agilebot robot

 Arm controller = new Arm(

 controllerIP,

 useLocalProxy

);

 // [ZH] 连接捷勃特机器人

 // [EN] Connect to the Agilebot robot

 StatusCode code = controller.ConnectSync();

 Console.WriteLine(

 code != StatusCode.OK

 ? code.GetDescription()

 : "连接成功/Successfully connected."

);

cs

4.6 寄存器信息 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 177 / 284

 if (code != StatusCode.OK)

 {

 return code;

 }

 try

 {

 // [ZH] 设置寄存器索引和值

 // [EN] Set register index and value

 int index = 1;

 double value = 9.9;

 // [ZH] 写入R寄存器

 // [EN] Write R register

 code = controller.Registers.Write_R(

 index,

 value

);

 if (code == StatusCode.OK)

 {

 Console.WriteLine(

 "写入R寄存器成功/Write R Register Success"

);

 }

 else

 {

 Console.WriteLine(

 $"写入R寄存器失败/Write R Register Failed: {code.GetDescription

()}"

);

 }

 // [ZH] 读取R寄存器

 // [EN] Read R register

 double readValue;

 (readValue, code) = controller.Registers.Read_R(

 index

);

 if (code == StatusCode.OK)

 {

 Console.WriteLine(

 $"读取R寄存器成功/Read R Register Success: 值/Value = {readValu

4.6 寄存器信息 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 178 / 284

e}"

);

 }

 else

 {

 Console.WriteLine(

 $"读取R寄存器失败/Read R Register Failed: {code.GetDescription

()}"

);

 }

 // [ZH] 删除R寄存器

 // [EN] Delete R register

 code = controller.Registers.Delete_R(index);

 if (code == StatusCode.OK)

 {

 Console.WriteLine(

 "删除R寄存器成功/Delete R Register Success"

);

 }

 else

 {

 Console.WriteLine(

 $"删除R寄存器失败/Delete R Register Failed: {code.GetDescription

()}"

);

 }

 }

 catch (Exception ex)

 {

 Console.WriteLine(

 $"执行过程中发生异常/Exception occurred during execution: {ex.Messag

e}"

);

 code = StatusCode.OtherReason;

 }

 finally

 {

 // [ZH] 关闭连接

 // [EN] Close the connection

 StatusCode disconnectCode =

 controller.Disconnect();

4.6 寄存器信息 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 179 / 284

方法名 Registers.Read_MR(int index)

描述 读取 MR 运动寄存器的值

请求参数 index : int 要读取的 MR 寄存器编号

返回值
int: MR 寄存器数值
StatusCode: 读取操作执行结果

兼容的机器人软件版本
协作机器人: 7.6.0.1
工业机器人: 7.6.0.0

方法名 Registers.Write_MR(int index , int value)

描述 写入 MR 运动寄存器的值

请求参数
index : int 要写入的 MR 寄存器编号
value : int 要写入的 MR 寄存器数值

4.6.2 MR 运动寄存器相关操作

4.6.2.1 获取一个 MR 寄存器的值

4.6.2.2 写入一个 MR 寄存器的值

 if (disconnectCode != StatusCode.OK)

 {

 Console.WriteLine(

 disconnectCode.GetDescription()

);

 if (code == StatusCode.OK)

 code = disconnectCode;

 }

 }

 return code;

 }

}

4.6 寄存器信息 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 180 / 284

方法名 Registers.Write_MR(int index , int value)

返回值 StatusCode: 写入操作执行结果

兼容的机器人软件版本
协作机器人: 7.6.0.1
工业机器人: 7.6.0.0

方法名 Registers.Delete_MR(int index)

描述 删除指定的 MR 运动寄存器

请求参数 index : int 要删除的 MR 寄存器编号

返回值 StatusCode: 删除操作执行结果

兼容的机器人软件版本
协作 (Copper): v7.5.0.0+
工业 (Bronze): v7.5.0.0+

示例代码

4.6.2.3 删除一个 MR 寄存器

Registers/MRRegisterOperations.cs

using Agilebot.IR;

using Agilebot.IR.Types;

public class MRRegisterOperations

{

 public static StatusCode Run(

 string controllerIP,

 bool useLocalProxy = true

)

 {

 // [ZH] 初始化捷勃特机器人

 // [EN] Initialize the Agilebot robot

 Arm controller = new Arm(

 controllerIP,

 useLocalProxy

);

cs

4.6 寄存器信息 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 181 / 284

 // [ZH] 连接捷勃特机器人

 // [EN] Connect to the Agilebot robot

 StatusCode code = controller.ConnectSync();

 Console.WriteLine(

 code != StatusCode.OK

 ? code.GetDescription()

 : "连接成功/Successfully connected."

);

 if (code != StatusCode.OK)

 {

 return code;

 }

 try

 {

 // [ZH] 设置寄存器索引和值

 // [EN] Set register index and value

 int index = 1;

 int value = 9;

 // [ZH] 写入MR寄存器

 // [EN] Write MR register

 code = controller.Registers.Write_MR(

 index,

 value

);

 if (code == StatusCode.OK)

 {

 Console.WriteLine(

 "写入MR寄存器成功/Write MR Register Success"

);

 }

 else

 {

 Console.WriteLine(

 $"写入MR寄存器失败/Write MR Register Failed: {code.GetDescriptio

n()}"

);

 }

 // [ZH] 读取MR寄存器

4.6 寄存器信息 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 182 / 284

 // [EN] Read MR register

 int readValue;

 (readValue, code) =

 controller.Registers.Read_MR(index);

 if (code == StatusCode.OK)

 {

 Console.WriteLine(

 $"读取MR寄存器成功/Read MR Register Success: 值/Value = {readVal

ue}"

);

 }

 else

 {

 Console.WriteLine(

 $"读取MR寄存器失败/Read MR Register Failed: {code.GetDescription

()}"

);

 }

 // [ZH] 删除MR寄存器

 // [EN] Delete MR register

 code = controller.Registers.Delete_MR(index);

 if (code == StatusCode.OK)

 {

 Console.WriteLine(

 "删除MR寄存器成功/Delete MR Register Success"

);

 }

 else

 {

 Console.WriteLine(

 $"删除MR寄存器失败/Delete MR Register Failed: {code.GetDescripti

on()}"

);

 }

 }

 catch (Exception ex)

 {

 Console.WriteLine(

 $"执行过程中发生异常/Exception occurred during execution: {ex.Messag

e}"

);

4.6 寄存器信息 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 183 / 284

方法名 Registers.Read_SR(int index)

描述 读取 SR 字符串寄存器的值

请求参数 index : int 要读取的 SR 寄存器编号

返回值
string: SR 寄存器字符串值
StatusCode: 读取操作执行结果

兼容的机器人软件版本
协作机器人: 7.6.0.1
工业机器人: 7.6.0.0

4.6.3 SR 字符串寄存器相关操作

4.6.3.1 获取一个 SR 寄存器的值

 code = StatusCode.OtherReason;

 }

 finally

 {

 // [ZH] 关闭连接

 // [EN] Close the connection

 StatusCode disconnectCode =

 controller.Disconnect();

 if (disconnectCode != StatusCode.OK)

 {

 Console.WriteLine(

 disconnectCode.GetDescription()

);

 if (code == StatusCode.OK)

 code = disconnectCode;

 }

 }

 return code;

 }

}

4.6 寄存器信息 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 184 / 284

方法名 Registers.Write_SR(int index , string value)

描述 写入 SR 字符串寄存器的值

请求参数
index : int 要写入的 SR 寄存器编号
value : string 要写入的 SR 寄存器字符串值

返回值 StatusCode: 写入操作执行结果

兼容的机器人软件版本
协作机器人: 7.6.0.1
工业机器人: 7.6.0.0

方法名 Registers.Delete_SR(int index)

描述 删除指定的 SR 字符串寄存器

请求参数 index : int 要删除的 SR 寄存器编号

返回值 StatusCode: 删除操作执行结果

兼容的机器人软件版本
协作 (Copper): v7.5.0.0+
工业 (Bronze): v7.5.0.0+

示例代码

4.6.3.2 写入一个 SR 寄存器的值

4.6.3.3 删除一个 SR 寄存器

Registers/SRRegisterOperations.cs

using Agilebot.IR;

using Agilebot.IR.Types;

public class SRRegisterOperations

{

 public static StatusCode Run(

 string controllerIP,

 bool useLocalProxy = true

)

 {

cs

4.6 寄存器信息 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 185 / 284

 // [ZH] 初始化捷勃特机器人

 // [EN] Initialize the Agilebot robot

 Arm controller = new Arm(

 controllerIP,

 useLocalProxy

);

 // [ZH] 连接捷勃特机器人

 // [EN] Connect to the Agilebot robot

 StatusCode code = controller.ConnectSync();

 Console.WriteLine(

 code != StatusCode.OK

 ? code.GetDescription()

 : "连接成功/Successfully connected."

);

 if (code != StatusCode.OK)

 {

 return code;

 }

 try

 {

 // [ZH] 设置寄存器索引和值

 // [EN] Set register index and value

 int index = 1;

 string value = "test";

 // [ZH] 写入SR寄存器

 // [EN] Write SR register

 code = controller.Registers.Write_SR(

 index,

 value

);

 if (code == StatusCode.OK)

 {

 Console.WriteLine(

 "写入SR寄存器成功/Write SR Register Success"

);

 }

 else

 {

4.6 寄存器信息 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 186 / 284

 Console.WriteLine(

 $"写入SR寄存器失败/Write SR Register Failed: {code.GetDescriptio

n()}"

);

 }

 // [ZH] 读取SR寄存器

 // [EN] Read SR register

 string readValue;

 (readValue, code) =

 controller.Registers.Read_SR(index);

 if (code == StatusCode.OK)

 {

 Console.WriteLine(

 $"读取SR寄存器成功/Read SR Register Success: 值/Value = {readVal

ue}"

);

 }

 else

 {

 Console.WriteLine(

 $"读取SR寄存器失败/Read SR Register Failed: {code.GetDescription

()}"

);

 }

 // [ZH] 删除SR寄存器

 // [EN] Delete SR register

 code = controller.Registers.Delete_SR(index);

 if (code == StatusCode.OK)

 {

 Console.WriteLine(

 "删除SR寄存器成功/Delete SR Register Success"

);

 }

 else

 {

 Console.WriteLine(

 $"删除SR寄存器失败/Delete SR Register Failed: {code.GetDescripti

on()}"

);

 }

4.6 寄存器信息 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 187 / 284

方法名 Registers.Read_PR(int index)

描述 读取 PR 位姿寄存器的值

请求参数 index : int 要读取的 PR 寄存器编号

4.6.4 PR 位姿寄存器相关操作

4.6.4.1 获取一个 PR 寄存器的值

 }

 catch (Exception ex)

 {

 Console.WriteLine(

 $"执行过程中发生异常/Exception occurred during execution: {ex.Messag

e}"

);

 code = StatusCode.OtherReason;

 }

 finally

 {

 // [ZH] 关闭连接

 // [EN] Close the connection

 StatusCode disconnectCode =

 controller.Disconnect();

 if (disconnectCode != StatusCode.OK)

 {

 Console.WriteLine(

 disconnectCode.GetDescription()

);

 if (code == StatusCode.OK)

 code = disconnectCode;

 }

 }

 return code;

 }

}

4.6 寄存器信息 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 188 / 284

方法名 Registers.Read_PR(int index)

返回值
PoseRegister: PR 寄存器位姿数据
StatusCode: 读取操作执行结果

兼容的机器人软件版本
协作机器人: 7.6.0.1
工业机器人: 7.6.0.0

方法名 Registers.Write_PR(int index , PoseRegister value)

描述 写入 PR 位姿寄存器的值

请求参数
index : int 要写入的 PR 寄存器编号
value : PoseRegister 要写入的 PR 寄存器位姿数据

返回值 StatusCode: 写入操作执行结果

兼容的机器人软件版本
协作机器人: 7.6.0.1
工业机器人: 7.6.0.0

方法名 Registers.Delete_PR(int index)

描述 删除指定的 PR 位姿寄存器

请求参数 index : int 要删除的 PR 寄存器编号

返回值 StatusCode: 删除操作执行结果

兼容的机器人软件版本
协作 (Copper): v7.5.0.0+
工业 (Bronze): v7.5.0.0+

示例代码

4.6.4.2 写入一个 PR 寄存器的值

4.6.4.3 删除一个 PR 寄存器

Registers/PRRegisterOperations.cs

using Agilebot.IR;

using Agilebot.IR.Registers;

cs

4.6 寄存器信息 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 189 / 284

using Agilebot.IR.Types;

public class PRRegisterOperations

{

 public static StatusCode Run(

 string controllerIP,

 bool useLocalProxy = true

)

 {

 // [ZH] 初始化捷勃特机器人

 // [EN] Initialize the Agilebot robot

 Arm controller = new Arm(

 controllerIP,

 useLocalProxy

);

 // [ZH] 连接捷勃特机器人

 // [EN] Connect to the Agilebot robot

 StatusCode code = controller.ConnectSync();

 Console.WriteLine(

 code != StatusCode.OK

 ? code.GetDescription()

 : "连接成功/Successfully connected."

);

 if (code != StatusCode.OK)

 {

 return code;

 }

 try

 {

 // [ZH] 设置寄存器索引

 // [EN] Set register index

 int index = 1;

 // [ZH] 生成位姿寄存器

 // [EN] Generate pose register

 var pose = new PoseRegister

 {

 Id = 1,

 Name = "Test",

4.6 寄存器信息 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 190 / 284

 Comment = "Test",

 PoseRegisterData = new PoseRegisterData

 {

 Pt = PoseType.Joint,

 Joint = new Joint

 {

 J1 = 6.6,

 J2 = 6.6,

 J3 = 6.6,

 J4 = 6.6,

 J5 = 6.6,

 J6 = 6.6,

 },

 CartData = null,

 },

 };

 // [ZH] 写入PR寄存器

 // [EN] Write PR register

 code = controller.Registers.Write_PR(pose);

 if (code == StatusCode.OK)

 {

 Console.WriteLine(

 "写入PR寄存器成功/Write PR Register Success"

);

 }

 else

 {

 Console.WriteLine(

 $"写入PR寄存器失败/Write PR Register Failed: {code.GetDescriptio

n()}"

);

 }

 // [ZH] 读取PR寄存器

 // [EN] Read PR register

 PoseRegister readValue;

 (readValue, code) =

 controller.Registers.Read_PR(index);

 if (code == StatusCode.OK)

 {

 Console.WriteLine(

4.6 寄存器信息 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 191 / 284

 $"读取PR寄存器成功/Read PR Register Success: ID = {readValue.I

d}"

);

 }

 else

 {

 Console.WriteLine(

 $"读取PR寄存器失败/Read PR Register Failed: {code.GetDescription

()}"

);

 }

 // [ZH] 删除PR寄存器

 // [EN] Delete PR register

 code = controller.Registers.Delete_PR(index);

 if (code == StatusCode.OK)

 {

 Console.WriteLine(

 "删除PR寄存器成功/Delete PR Register Success"

);

 }

 else

 {

 Console.WriteLine(

 $"删除PR寄存器失败/Delete PR Register Failed: {code.GetDescripti

on()}"

);

 }

 }

 catch (Exception ex)

 {

 Console.WriteLine(

 $"执行过程中发生异常/Exception occurred during execution: {ex.Messag

e}"

);

 code = StatusCode.OtherReason;

 }

 finally

 {

 // [ZH] 关闭连接

 // [EN] Close the connection

 StatusCode disconnectCode =

4.6 寄存器信息 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 192 / 284

方法名 Registers.Read_MH(int index)

描述 获取 MH 寄存器的值

请求参数 index : int 希望获取的寄存器编号

返回值
寄存器信息

StatusCode: 函数执行结果

兼容的机器人软件版本
协作机器人: 7.6.0.0
工业机器人: 7.6.0.0

方法名 Registers.Read_MI(int index)

描述 获取 MI 寄存器的值

请求参数 index : int 希望获取的寄存器编号

4.6.5 Modbus 寄存器（MH 保持寄存器、MI 输入寄存器）

4.6.5.1 获取一个 MH 寄存器的值

4.6.5.2 获取一个 MI 寄存器的值

 controller.Disconnect();

 if (disconnectCode != StatusCode.OK)

 {

 Console.WriteLine(

 disconnectCode.GetDescription()

);

 if (code == StatusCode.OK)

 code = disconnectCode;

 }

 }

 return code;

 }

}

4.6 寄存器信息 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 193 / 284

方法名 Registers.Read_MI(int index)

返回值
寄存器信息

StatusCode: 函数执行结果

兼容的机器人软件版本
协作机器人: 7.6.0.0
工业机器人: 7.6.0.0

方法名 Registers.Write_MH(int index , int value)

描述 更新一个 MH 寄存器的值

请求参数
index : int 寄存器的编号
value : int 需要更新的寄存器信息

返回值 StatusCode: 函数执行结果

兼容的机器人软件版本
协作机器人: 7.6.0.0
工业机器人: 7.6.0.0

方法名 Registers.Write_MI(int index , int value)

描述 更新一个 MI 寄存器的值

请求参数
index : int 寄存器的编号
value : int 需要更新的寄存器信息

返回值 StatusCode: 函数执行结果

兼容的机器人软件版本
协作机器人: 7.6.0.0
工业机器人: 7.6.0.0

示例代码

4.6.5.3 写入一个 MH 寄存器的值

4.6.5.4 写入一个 MI 寄存器的值

Registers/ModbusRegisterOperations.cs

4.6 寄存器信息 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 194 / 284

using Agilebot.IR;

using Agilebot.IR.Types;

public class ModbusRegisterOperations

{

 public static StatusCode Run(

 string controllerIP,

 bool useLocalProxy = true

)

 {

 // [ZH] 初始化捷勃特机器人

 // [EN] Initialize the Agilebot robot

 Arm controller = new Arm(

 controllerIP,

 useLocalProxy

);

 // [ZH] 连接捷勃特机器人

 // [EN] Connect to the Agilebot robot

 StatusCode code = controller.ConnectSync();

 Console.WriteLine(

 code != StatusCode.OK

 ? code.GetDescription()

 : "连接成功/Successfully connected."

);

 if (code != StatusCode.OK)

 {

 return code;

 }

 try

 {

 // [ZH] 设置寄存器索引和值

 // [EN] Set register index and value

 int index = 1;

 int writeValue = 8;

 // [ZH] 写入MH保持寄存器

 // [EN] Write MH holding register

 code = controller.Registers.Write_MH(

cs

4.6 寄存器信息 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 195 / 284

 index,

 writeValue

);

 if (code == StatusCode.OK)

 {

 Console.WriteLine(

 "写入MH保持寄存器成功/Write MH Holding Register Success"

);

 }

 else

 {

 Console.WriteLine(

 $"写入MH保持寄存器失败/Write MH Holding Register Failed: {code.G

etDescription()}"

);

 }

 // [ZH] 写入MI输入寄存器

 // [EN] Write MI input register

 code = controller.Registers.Write_MI(

 index,

 writeValue + 1

);

 if (code == StatusCode.OK)

 {

 Console.WriteLine(

 "写入MI输入寄存器成功/Write MI Input Register Success"

);

 }

 else

 {

 Console.WriteLine(

 $"写入MI输入寄存器失败/Write MI Input Register Failed: {code.Get

Description()}"

);

 }

 // [ZH] 读取MH保持寄存器

 // [EN] Read MH holding register

 int mhValue;

 (mhValue, code) = controller.Registers.Read_MH(

 index

4.6 寄存器信息 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 196 / 284

);

 if (code == StatusCode.OK)

 {

 Console.WriteLine(

 $"读取MH保持寄存器成功/Read MH Holding Register Success: 值/Valu

e = {mhValue}"

);

 }

 else

 {

 Console.WriteLine(

 $"读取MH保持寄存器失败/Read MH Holding Register Failed: {code.Ge

tDescription()}"

);

 }

 // [ZH] 读取MI输入寄存器

 // [EN] Read MI input register

 int miValue;

 (miValue, code) = controller.Registers.Read_MI(

 index

);

 if (code == StatusCode.OK)

 {

 Console.WriteLine(

 $"读取MI输入寄存器成功/Read MI Input Register Success: 值/Value

= {miValue}"

);

 }

 else

 {

 Console.WriteLine(

 $"读取MI输入寄存器失败/Read MI Input Register Failed: {code.GetD

escription()}"

);

 }

 }

 catch (Exception ex)

 {

 Console.WriteLine(

 $"执行过程中发生异常/Exception occurred during execution: {ex.Messag

e}"

4.6 寄存器信息 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 197 / 284

);

 code = StatusCode.OtherReason;

 }

 finally

 {

 // [ZH] 关闭连接

 // [EN] Close the connection

 StatusCode disconnectCode =

 controller.Disconnect();

 if (disconnectCode != StatusCode.OK)

 {

 Console.WriteLine(

 disconnectCode.GetDescription()

);

 if (code == StatusCode.OK)

 code = disconnectCode;

 }

 }

 return code;

 }

}

4.6 寄存器信息 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 198 / 284

方法名 Trajectory.SetOffLineTrajectoryFile(string path)

描述 设置待执行的离线轨迹文件

请求参数

path : string 离线轨迹文件路径，如示例文件 A.trajectory
A.trajectory 轨迹文件格式为文本文件，说明如下：
- 第 1 行：6 代表 6 个轴，0.001 代表两个点之间间隔 1ms，8093 代表一共 8093 个
轨迹点

- 第二行：表示 6 个轴的起始位置
- 3-8095 行：表示轨迹点，包括 6 个轴的位置、速度、加速度、力矩前馈、do 端
口、do 端口的值
- do_port 代表使用的 do 端口（取值范围 1-24）
- do_port 为 - 1，表示在该位置不会触发 IO 信号
- do_port 为 1，do_state 为 1，则表明 do1 端口会在该位置触发 ON 信号
- do_port 为 1，do_state 为 0，则表明 do1 端口会在该位置触发 OFF 信号
用户通过 FileManager.upload 将离线文件发送到机器人控制器根目录，用 4.7.2 和
4.7.3 指令执行轨迹

返回值 StatusCode: 设置操作执行结果

兼容的机器人软

件版本

协作 (Copper): v7.5.0.0+
工业 (Bronze): v7.5.0.0+

方法名 Trajectory.PrepareOfflineTrajectory()

描述 让机器人以安全速度移动到离线轨迹的起始点

请求参数 无参数

4.7 轨迹控制

4.7.1 设置待执行的离线轨迹文件

4.7.2 机器人移动到离线轨迹中的起始点

4.7 轨迹控制 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 199 / 284

方法名 Trajectory.PrepareOfflineTrajectory()

返回值 StatusCode: 准备操作执行结果

兼容的机器人软件版本
协作 (Copper): v7.5.0.0+
工业 (Bronze): v7.5.0.0+

方法名 Trajectory.ExecuteOfflineTrajectory()

描述 让机器人开始执行离线轨迹文件

请求参数 无参数

返回值 StatusCode: 执行操作执行结果

兼容的机器人软件版本
协作 (Copper): v7.5.0.0+
工业 (Bronze): v7.5.0.0+

方法名 Trajectory.TransformCsvToTrajectory(string fileName)

描述
将轨迹 CSV 文件转换成 trajectory 格式的轨迹文件并存放在控制柜的轨迹文件目
录上

请求参数 fileName : string CSV 轨迹文件名

返回值
string: 成功转换后的 trajectory 文件路径
StatusCode: 转换操作执行结果

兼容的机器人软件版

本

协作 (Copper): v7.5.0.0+
工业 (Bronze): v7.5.0.0+

4.7.3 机器人开始执行离线轨迹文件

4.7.4 将 CSV 轨迹文件转换为 Trajectory 格式

4.7 轨迹控制 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 200 / 284

方法名 Trajectory.CheckTransformStatus(string fileName)

描述 查询 TransformCsvToTrajectory 流程工作状态

请求参数 fileName : string TransformCsvToTrajectory 接口返回的结果

返回值
TransformState: 转换状态
StatusCode: 查询操作执行结果

兼容的机器人软件版本
协作 (Copper): v7.5.0.0+
工业 (Bronze): v7.5.0.0+

示例代码

4.7.5 查询轨迹转换状态

Trajectory/OfflineTrajectory.cs

using System.IO;

using Agilebot.IR;

using Agilebot.IR.Trajectory;

using Agilebot.IR.Types;

public class OfflineTrajectory

{

 public static StatusCode Run(

 string controllerIP,

 bool useLocalProxy = true

)

 {

 // [ZH] 初始化捷勃特机器人

 // [EN] Initialize the Agilebot robot

 Arm controller = new Arm(

 controllerIP,

 useLocalProxy

);

 // [ZH] 连接捷勃特机器人

 // [EN] Connect to the Agilebot robot

 StatusCode code = controller.ConnectSync();

cs

4.7 轨迹控制 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 201 / 284

 Console.WriteLine(

 code != StatusCode.OK

 ? code.GetDescription()

 : "连接成功/Successfully connected."

);

 if (code != StatusCode.OK)

 {

 return code;

 }

 try

 {

 // [ZH] 获取机器人模式

 // [EN] Get robot mode

 (UserOpMode opMode, StatusCode opCode) =

 controller.GetOpMode();

 if (opCode == StatusCode.OK)

 {

 Console.WriteLine(

 $"当前机器人模式/Current robot mode: {opMode}"

);

 if (opMode != UserOpMode.AUTO)

 {

 Console.WriteLine(

 $"离线轨迹执行必须在机器人自动模式下/Offline trajectory execut

ion must be in automatic mode"

);

 return StatusCode.OtherReason;

 }

 }

 else

 {

 Console.WriteLine(

 $"获取机器人模式失败/Failed to get robot mode: {opCode.GetDescri

ption()}"

);

 }

 // [ZH] 添加程序文件到机器人中

 // [EN] Add program file to robot

 string file_user_program = GetTestFilePath(

4.7 轨迹控制 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 202 / 284

 "test.csv"

);

 StatusCode ret_code =

 controller.FileManager.Upload(

 file_user_program,

 FileType.TmpFile,

 true

);

 if (ret_code != StatusCode.OK)

 {

 Console.WriteLine(

 $"上传文件失败/Upload file failed: {ret_code.GetDescription()}"

);

 return ret_code;

 }

 Console.WriteLine(

 "文件上传成功/File upload success"

);

 // [ZH] 测试CSV转换为轨迹文件功能

 // [EN] Test CSV to trajectory file conversion functionality

 string csvFilename = "test.csv";

 (

 string trajFileName,

 StatusCode transformCode

) =

 controller.Trajectory.TransformCsvToTrajectory(

 csvFilename

);

 if (transformCode != StatusCode.OK)

 {

 Console.WriteLine(

 $"CSV转换失败/CSV conversion failed: {transformCode.GetDescript

ion()}"

);

 return transformCode;

 }

 Console.WriteLine(

 $"CSV转换成功/CSV conversion success, trajectory file: {trajFileNam

e}"

);

4.7 轨迹控制 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 203 / 284

 // [ZH] 检查转换状态

 // [EN] Check conversion status

 var startTime = System.DateTime.Now;

 TransformState state;

 StatusCode statusCode;

 do

 {

 (state, statusCode) =

 controller.Trajectory.CheckTransformStatus(

 System.IO.Path.GetFileName(

 trajFileName

)

);

 if (statusCode != StatusCode.OK)

 {

 Console.WriteLine(

 $"检查转换状态失败/Check transform status failed: {statusCod

e.GetDescription()}"

);

 return statusCode;

 }

 Console.WriteLine(

 $"转换状态/Transform state: {state}"

);

 Thread.Sleep(2000); // 等待2秒

 if (

 System.DateTime.Now - startTime

 > System.TimeSpan.FromSeconds(60)

)

 {

 Console.WriteLine(

 "转换状态检查超时/Transform status check timeout"

);

 break;

 }

 } while (

 state != TransformState.TRANSFORM_SUCCESS

 && state != TransformState.TRANSFORM_FAILED

);

4.7 轨迹控制 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 204 / 284

 if (state == TransformState.TRANSFORM_FAILED)

 {

 Console.WriteLine(

 "CSV转换失败/CSV conversion failed"

);

 return StatusCode.OtherReason;

 }

 // [ZH] 转换任务成功并进行了结果查询后 服务端不会继续保存转换任务的状态

 // [EN] After the conversion task is successful and the result is queri

ed, the server will not continue to save the conversion task status

 (

 TransformState finalState,

 StatusCode finalCode

) = controller.Trajectory.CheckTransformStatus(

 System.IO.Path.GetFileName(trajFileName)

);

 if (finalCode != StatusCode.OK)

 {

 Console.WriteLine(

 $"最终状态检查失败/Final status check failed: {finalCode.GetDesc

ription()}"

);

 return finalCode;

 }

 Console.WriteLine(

 $"最终转换状态/Final transform state: {finalState}"

);

 // [ZH] 设置轨迹文件

 // [EN] Set trajectory file

 code =

 controller.Trajectory.SetOffLineTrajectoryFile(

 "test_torque.trajectory"

);

 if (code != StatusCode.OK)

 {

 Console.WriteLine(

 $"设置轨迹文件失败/Set trajectory file failed: {code.GetDescript

ion()}"

);

4.7 轨迹控制 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 205 / 284

 return code;

 }

 Console.WriteLine(

 "设置轨迹文件成功/Set trajectory file success"

);

 // [ZH] 准备离线轨迹

 // [EN] Prepare offline trajectory

 code =

 controller.Trajectory.PrepareOfflineTrajectory();

 if (code != StatusCode.OK)

 {

 Console.WriteLine(

 $"准备离线轨迹失败/Prepare offline trajectory failed: {code.GetD

escription()}"

);

 return code;

 }

 Console.WriteLine(

 "准备离线轨迹成功/Prepare offline trajectory success"

);

 // [ZH] 等待机器人和伺服器空闲

 // [EN] Wait for robot and servo to be idle

 startTime = System.DateTime.Now;

 RobotState robotStatus;

 ServoState servoStatus;

 StatusCode robotStatusCode;

 StatusCode servoStatusCode;

 do

 {

 (robotStatus, robotStatusCode) =

 controller.GetRobotState();

 if (robotStatusCode != StatusCode.OK)

 {

 Console.WriteLine(

 $"获取机器人状态失败/Get robot state failed: {robotStatusCod

e.GetDescription()}"

);

 return robotStatusCode;

 }

4.7 轨迹控制 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 206 / 284

 (servoStatus, servoStatusCode) =

 controller.GetServoState();

 if (servoStatusCode != StatusCode.OK)

 {

 Console.WriteLine(

 $"获取伺服状态失败/Get servo state failed: {servoStatusCode.

GetDescription()}"

);

 return servoStatusCode;

 }

 Console.WriteLine(

 $"机器人状态/Robot state: {robotStatus}, 伺服状态/Servo state:

{servoStatus}"

);

 if (

 robotStatus == RobotState.ROBOT_IDLE

 && servoStatus == ServoState.SERVO_IDLE

)

 {

 Console.WriteLine(

 "机器人和伺服器已空闲/Robot and servo are idle"

);

 break;

 }

 Thread.Sleep(2000); // 等待2秒

 if (

 System.DateTime.Now - startTime

 > System.TimeSpan.FromSeconds(60)

)

 {

 Console.WriteLine(

 "等待机器人和伺服器空闲超时/Waiting for robot and servo idle

timeout"

);

 break;

 }

 } while (true);

4.7 轨迹控制 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 207 / 284

 // [ZH] 执行离线轨迹

 // [EN] Execute offline trajectory

 code =

 controller.Trajectory.ExecuteOfflineTrajectory();

 if (code == StatusCode.OK)

 {

 Console.WriteLine(

 "执行离线轨迹成功/Execute offline trajectory success"

);

 Console.WriteLine(

 "机器人开始执行轨迹程序/Robot started executing trajectory progra

m"

);

 }

 else

 {

 Console.WriteLine(

 $"执行离线轨迹失败/Execute offline trajectory failed: {code.GetD

escription()}"

);

 }

 }

 catch (Exception ex)

 {

 Console.WriteLine(

 $"执行过程中发生异常/Exception occurred during execution/Exception o

ccurred during execution: {ex.Message}"

);

 code = StatusCode.OtherReason;

 }

 finally

 {

 // [ZH] 关闭连接

 // [EN] Close the connection

 StatusCode disconnectCode =

 controller.Disconnect();

 if (disconnectCode != StatusCode.OK)

 {

 Console.WriteLine(

 disconnectCode.GetDescription()

);

4.7 轨迹控制 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 208 / 284

 if (code == StatusCode.OK)

 code = disconnectCode;

 }

 }

 return code;

 }

 /// <summary>

 /// 获取test_files文件夹中文件的路径示例方法

 /// 展示如何获取当前程序目录下的test_files文件夹中的文件路径

 /// </summary>

 private static string GetTestFilePath(string fileName)

 {

 // 获取当前程序集的目录

 string? codeFilePath =

 new System.Diagnostics.StackTrace(true)

 .GetFrame(0)

 ?.GetFileName();

 if (string.IsNullOrEmpty(codeFilePath))

 {

 throw new InvalidOperationException(

 "无法获取当前文件路径/Cannot get current file path"

);

 }

 string? codeDirectory = Path.GetDirectoryName(

 codeFilePath

);

 if (string.IsNullOrEmpty(codeDirectory))

 {

 throw new InvalidOperationException(

 "无法获取当前目录路径/Cannot get current directory path"

);

 }

 // 构建test_files文件夹路径

 string testFilesDirectory = Path.Combine(

 codeDirectory,

 "test_files"

);

 // 构建文件完整路径

4.7 轨迹控制 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 209 / 284

 string filePath = Path.Combine(

 testFilesDirectory,

 fileName

);

 return filePath;

 }

}

4.7 轨迹控制 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 210 / 284

方法名 Alarm.GetTopAlarm()

描述 获取当前最严重的一条报警信息

请求参数 无参数

返回值
string: 报警信息字符串
StatusCode: 获取操作执行结果

兼容的机器人软件版本
协作 (Copper): v7.5.0.0+
工业 (Bronze): v7.5.0.0+

示例代码

4.8 报警信息

4.8.1 获取最严重的一条报警

Alarm/GetTopAlarm.cs

using Agilebot.IR;

using Agilebot.IR.Types;

public class GetTopAlarm

{

 public static StatusCode Run(

 string controllerIP,

 bool useLocalProxy = true

)

 {

 // [ZH] 初始化捷勃特机器人

 // [EN] Initialize the Agilebot robot

 Arm controller = new Arm(

 controllerIP,

 useLocalProxy

);

cs

4.8 报警信息 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 211 / 284

 // [ZH] 连接捷勃特机器人

 // [EN] Connect to the Agilebot robot

 StatusCode code = controller.ConnectSync();

 Console.WriteLine(

 code != StatusCode.OK

 ? code.GetDescription()

 : "连接成功/Successfully connected."

);

 if (code != StatusCode.OK)

 {

 return code;

 }

 try

 {

 // [ZH] 获取最严重的一条报警

 // [EN] Get the most severe alarm

 string topError;

 (topError, code) =

 controller.Alarm.GetTopAlarm();

 if (code == StatusCode.OK)

 {

 Console.WriteLine(

 "获取最严重报警成功/Get Top Alarm Success"

);

 if (string.IsNullOrEmpty(topError))

 {

 Console.WriteLine(

 "当前无报警/No current alarms"

);

 }

 else

 {

 Console.WriteLine(

 $"最严重报警/Most Severe Alarm: {topError}"

);

 }

 }

 else

 {

 Console.WriteLine(

4.8 报警信息 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 212 / 284

方法名 Alarm.GetAllActiveAlarms()

描述 获取所有当前活动的报警信息

4.8.2 获取所有的活动的报警

 $"获取最严重报警失败/Get Top Alarm Failed: {code.GetDescription

()}"

);

 }

 }

 catch (Exception ex)

 {

 Console.WriteLine(

 $"执行过程中发生异常/Exception occurred during execution: {ex.Messag

e}"

);

 code = StatusCode.OtherReason;

 }

 finally

 {

 // [ZH] 关闭连接

 // [EN] Close the connection

 StatusCode disconnectCode =

 controller.Disconnect();

 if (disconnectCode != StatusCode.OK)

 {

 Console.WriteLine(

 disconnectCode.GetDescription()

);

 if (code == StatusCode.OK)

 code = disconnectCode;

 }

 }

 return code;

 }

}

4.8 报警信息 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 213 / 284

方法名 Alarm.GetAllActiveAlarms()

请求参数 无参数

返回值
List<string>: 报警信息列表
StatusCode: 获取操作执行结果

兼容的机器人软件版本
协作 (Copper): v7.5.0.0+
工业 (Bronze): v7.5.0.0+

示例代码

Alarm/GetAllActiveAlarms.cs

using Agilebot.IR;

using Agilebot.IR.Types;

public class GetAllActiveAlarms

{

 public static StatusCode Run(

 string controllerIP,

 bool useLocalProxy = true

)

 {

 // [ZH] 初始化捷勃特机器人

 // [EN] Initialize the Agilebot robot

 Arm controller = new Arm(

 controllerIP,

 useLocalProxy

);

 // [ZH] 连接捷勃特机器人

 // [EN] Connect to the Agilebot robot

 StatusCode code = controller.ConnectSync();

 Console.WriteLine(

 code != StatusCode.OK

 ? code.GetDescription()

 : "连接成功/Successfully connected."

);

 if (code != StatusCode.OK)

cs

4.8 报警信息 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 214 / 284

 {

 return code;

 }

 try

 {

 // [ZH] 获取所有的活动的报警

 // [EN] Get all active alarms

 List<string> errors;

 (errors, code) =

 controller.Alarm.GetAllActiveAlarms();

 if (code == StatusCode.OK)

 {

 Console.WriteLine(

 "获取所有活动报警成功/Get All Active Alarm Success"

);

 Console.WriteLine(

 $"活动报警数量/Active Alarm Count: {errors.Count}"

);

 if (errors.Count == 0)

 {

 Console.WriteLine(

 "当前无活动报警/No active alarms"

);

 }

 else

 {

 Console.WriteLine(

 "活动报警列表/Active Alarm List:"

);

 for (int i = 0; i < errors.Count; i++)

 {

 Console.WriteLine(

 $" {i + 1}. {errors[i]}"

);

 }

 }

 }

 else

 {

 Console.WriteLine(

4.8 报警信息 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 215 / 284

方法名 Alarm.ResetAlarms()

描述 复位错误

4.8.3 复位错误

 $"获取所有活动报警失败/Get All Active Alarm Failed: {code.GetDes

cription()}"

);

 }

 }

 catch (Exception ex)

 {

 Console.WriteLine(

 $"执行过程中发生异常/Exception occurred during execution: {ex.Messag

e}"

);

 code = StatusCode.OtherReason;

 }

 finally

 {

 // [ZH] 关闭连接

 // [EN] Close the connection

 StatusCode disconnectCode =

 controller.Disconnect();

 if (disconnectCode != StatusCode.OK)

 {

 Console.WriteLine(

 disconnectCode.GetDescription()

);

 if (code == StatusCode.OK)

 code = disconnectCode;

 }

 }

 return code;

 }

}

4.8 报警信息 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 216 / 284

方法名 Alarm.ResetAlarms()

请求参数 无参数

返回值 StatusCode: 函数执行结果

兼容的机器人软件版本
协作 (Copper): v7.5.0.0+
工业 (Bronze): v7.5.0.0+

4.8 报警信息 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 217 / 284

方法名 FileManager.Upload(string filePath , FileType ft , bool overWriting = false)

描述 上传本地文件到机器人控制器

请求参数

filePath : string 需要上传的本地文件的绝对路径
ft : FileType 上传的文件类型
overWriting : bool 是否覆盖机器人控制器中已存在的文件，默认为 false 不覆盖

备注
USER_PROGRAM 和 BLOCK_PROGRAM 上传时请提供对应 .xml / .block 文件的完整
路径，系统会同时上传同名 .json / .xml 文件。

返回值 StatusCode: 上传操作执行结果

兼容的机器

人软件版本

协作 (Copper): v7.5.0.0+
工业 (Bronze): v7.5.0.0+

方法名 FileManager.Download(string fileName , FileType ft , string savePath)

描述 从机器人控制器下载文件到本地

请求参数

fileName : string 要下载的文件名
ft : FileType 要下载的文件类型
savePath : string 下载文件的本地保存路径

备注
UserProgram / BlockProgram / TrajectoryProgram 下载时仅填写程序名（不含后
缀）； TmpFile 请填写带后缀的完整文件名。

返回值 StatusCode: 下载操作执行结果

兼容的机器人 协作 (Copper): v7.5.0.0+

4.9 文件服务类

4.9.1 上传本地文件到机器人

4.9.2 下载机器人文件到本地

4.9 文件服务类 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 218 / 284

方法名 FileManager.Download(string fileName , FileType ft , string savePath)

软件版本 工业 (Bronze): v7.5.0.0+

方法名 FileManager.Delete(string fileName , FileType ft)

描述 删除机器人控制器上的文件

请求参数
fileName : string 要删除的文件名
ft : FileType 要删除的文件类型

备注
UserProgram / BlockProgram / TrajectoryProgram 删除时仅填写程序名（不含后
缀）； TmpFile 请填写带后缀的完整文件名。

返回值 StatusCode: 删除操作执行结果

兼容的机器人

软件版本

协作 (Copper): v7.5.0.0+
工业 (Bronze): v7.5.0.0+

示例代码

4.9.3 删除机器人上的文件

FileManager/UserProgramOperations.cs

using System.Collections.Generic;

using System.IO;

using Agilebot.IR;

using Agilebot.IR.FileManager;

using Agilebot.IR.Types;

public class UserProgramOperations

{

 /// <summary>

 /// 测试用户程序文件的完整操作流程：上传、下载、搜索和删除

 /// </summary>

 public static StatusCode Run(

 string controllerIP,

 bool useLocalProxy = true

cs

4.9 文件服务类 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 219 / 284

)

 {

 // [ZH] 初始化捷勃特机器人

 // [EN] Initialize the Agilebot robot

 Arm controller = new Arm(

 controllerIP,

 useLocalProxy

);

 // [ZH] 连接捷勃特机器人

 // [EN] Connect to the Agilebot robot

 StatusCode code = controller.ConnectSync();

 Console.WriteLine(

 code != StatusCode.OK

 ? code.GetDescription()

 : "连接成功/Successfully connected."

);

 if (code != StatusCode.OK)

 {

 return code;

 }

 try

 {

 Console.WriteLine(

 "开始用户程序文件操作测试/Starting User Program File Operations Test"

);

 // [ZH] 获取测试文件路径

 // [EN] Get test file path

 string file_user_program = GetTestFilePath(

 "test_prog.xml"

);

 string fileName = "test_prog";

 string save_path = GetTestFilePath("download");

 // [ZH] 上传用户程序文件

 // [EN] Upload user program file

 code = controller.FileManager.Upload(

 file_user_program,

 FileType.UserProgram,

4.9 文件服务类 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 220 / 284

 true

);

 if (code == StatusCode.OK)

 {

 Console.WriteLine(

 $"用户程序文件上传成功/User Program File Upload Success: {fileNa

me}"

);

 }

 else

 {

 Console.WriteLine(

 $"用户程序文件上传失败/User Program File Upload Failed: {code.Ge

tDescription()}"

);

 return code;

 }

 // [ZH] 等待下载

 // [EN] Wait before download

 Thread.Sleep(1000);

 // [ZH] 下载用户程序文件

 // [EN] Download user program file

 code = controller.FileManager.Download(

 fileName,

 FileType.UserProgram,

 save_path

);

 if (code == StatusCode.OK)

 {

 Console.WriteLine(

 $"用户程序文件下载成功/User Program File Download Success: {file

Name}"

);

 }

 else

 {

 Console.WriteLine(

 $"用户程序文件下载失败/User Program File Download Failed: {code.

GetDescription()}"

);

4.9 文件服务类 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 221 / 284

 return code;

 }

 // [ZH] 搜索用户程序文件

 // [EN] Search user program file

 List<string> results = new List<string>();

 (results, code) = controller.FileManager.Search(

 fileName

);

 if (code == StatusCode.OK)

 {

 Console.WriteLine(

 $"用户程序文件搜索成功/User Program File Search Success"

);

 Console.WriteLine(

 $"搜索结果数量/Search Results Count: {results.Count}"

);

 foreach (var result in results)

 {

 Console.WriteLine(

 $" 找到文件/Found File: {result}"

);

 }

 }

 else

 {

 Console.WriteLine(

 $"用户程序文件搜索失败/User Program File Search Failed: {code.Ge

tDescription()}"

);

 return code;

 }

 // [ZH] 等待删除

 // [EN] Wait before delete

 Thread.Sleep(1000);

 // [ZH] 删除用户程序文件

 // [EN] Delete user program file

 code = controller.FileManager.Delete(

 fileName,

 FileType.UserProgram

4.9 文件服务类 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 222 / 284

);

 if (code == StatusCode.OK)

 {

 Console.WriteLine(

 $"用户程序文件删除成功/User Program File Delete Success: {fileNa

me}"

);

 }

 else

 {

 Console.WriteLine(

 $"用户程序文件删除失败/User Program File Delete Failed: {code.Ge

tDescription()}"

);

 return code;

 }

 Console.WriteLine(

 "用户程序文件操作测试完成/User Program File Operations Test Complete

d"

);

 }

 catch (Exception ex)

 {

 Console.WriteLine(

 $"执行过程中发生异常/Exception occurred during execution: {ex.Messag

e}"

);

 code = StatusCode.OtherReason;

 }

 finally

 {

 // [ZH] 关闭连接

 // [EN] Close the connection

 StatusCode disconnectCode =

 controller.Disconnect();

 if (disconnectCode != StatusCode.OK)

 {

 Console.WriteLine(

 disconnectCode.GetDescription()

);

 if (code == StatusCode.OK)

4.9 文件服务类 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 223 / 284

 code = disconnectCode;

 }

 }

 return code;

 }

 /// <summary>

 /// 获取test_files文件夹中文件的路径示例方法

 /// 展示如何获取当前程序目录下的test_files文件夹中的文件路径

 /// </summary>

 private static string GetTestFilePath(string fileName)

 {

 // [ZH] 获取当前程序集的目录

 // [EN] Get current assembly directory

 string? codeFilePath =

 new System.Diagnostics.StackTrace(true)

 .GetFrame(0)

 ?.GetFileName();

 if (string.IsNullOrEmpty(codeFilePath))

 {

 throw new InvalidOperationException(

 "无法获取当前文件路径/Cannot get current file path"

);

 }

 string? codeDirectory = Path.GetDirectoryName(

 codeFilePath

);

 if (string.IsNullOrEmpty(codeDirectory))

 {

 throw new InvalidOperationException(

 "无法获取当前目录路径/Cannot get current directory path"

);

 }

 // [ZH] 构建test_files文件夹路径

 // [EN] Build test_files folder path

 string testFilesDirectory = Path.Combine(

 codeDirectory,

 "test_files"

);

4.9 文件服务类 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 224 / 284

方法名 FileManager.Search(string pattern , ref List<string> fl)

描述 在机器人控制器上按文件名模式搜索文件。

请求参数
pattern : string 文件名匹配模式
fl : ref List<string> 返回的文件列表

返回值 StatusCode: 搜索操作执行结果

兼容的机器人软件版本
协作 (Copper): v7.5.0.0+
工业 (Bronze): v7.5.0.0+

4.9.4 按文件名模式搜索文件

 // [ZH] 构建文件完整路径

 // [EN] Build complete file path

 string filePath = Path.Combine(

 testFilesDirectory,

 fileName

);

 return filePath;

 }

}

4.9 文件服务类 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 225 / 284

方法名 BasScript(string name)

描述 BasScript 脚本程序类构造函数，对应示教器程序编写中的程序指令

请求参数 name : string 脚本程序名称

兼容的机器人软件

版本

协作 (Copper): v7.5.2.0+
工业 (Bronze): 不支持

备注
BasScript 脚本程序类下所有方法兼容的机器人软件版本要求同本类的兼容的机器人
软件版本要求一致

方法

名

BasScript.BasMotion.MoveJoint(poseType, poseIndex, speedType, speedValue,
smoothType, smoothDistance, extraParam)

描述 移动机器人关节到指定位置，对应示教器程序编写中的 MoveJoint 指令

请求

参数

poseType : 位姿类型
poseIndex : 位姿索引
speedType : 速度类型
speedValue : 速度值
smoothType : 平滑类型
smoothDistance : 平滑距离
extraParam : 额外参数

返回

值
StatusCode: 运动指令执行结果

4.10 BasScript 脚本程序类

4.10.1 MoveJoint 运动到点指令

4.10.2 MoveLine 直线运动到点指令

4.10 BasScript脚本程序类 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 226 / 284

方法

名

BasScript.BasMotion.MoveLine(poseType, poseIndex, speedType, speedValue,
smoothType, smoothDistance, extraParam)

描述 沿直线移动机器人到指定位置，对应示教器程序编写中的 MoveLine 指令

请求

参数

poseType : 位姿类型
poseIndex : 位姿索引
speedType : 速度类型
speedValue : 速度值
smoothType : 平滑类型
smoothDistance : 平滑距离
extraParam : 额外参数

返回

值
StatusCode: 运动指令执行结果

方法

名

BasScript.BasMotion.MoveCircle(poseType1, poseIndex1, poseType2, poseIndex2,
speedType, speedValue, smoothType, smoothDistance, extraParam)

描述 沿圆弧移动机器人到指定位置，对应示教器程序编写中的 MoveCircle 指令

请求

参数

poseType1 : 第一个位姿类型
poseIndex1 : 第一个位姿索引
poseType2 : 第二个位姿类型
poseIndex2 : 第二个位姿索引
speedType : 速度类型
speedValue : 速度值
smoothType : 平滑类型
smoothDistance : 平滑距离
extraParam : 额外参数

返回

值
StatusCode: 运动指令执行结果

4.10.3 MoveCircle 弧线运动到点指令

4.10.4 Jump 点对点移动指令

4.10 BasScript脚本程序类 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 227 / 284

方法

名

BasScript.BasMotion.Jump(poseType, poseIndex, speedValue, speedRatio, limZType,
limZValue, smoothType, smoothDistance, extraParam)

描述 JUMP 指令，机器人点对点移动到指定位置

请求

参数

poseType : 目标位姿存储类型
poseIndex : 目标位置的索引
speedValue : 移动速度的值
speedRatio : 移动速度的比率
limZType : Z 轴限制的类型
limZValue : Z 轴限制的值
smoothType : 平滑类型
smoothDistance : 平滑距离
extraParam : 额外参数

返回

值
StatusCode: 运动指令执行结果

方法

名

BasScript.BasMotion.Jump3(poseType, poseIndex, speedValue, speedRatio, smoothType,
smoothDistance, extraParam)

描述 JUMP3 指令，机器人点对点移动到指定位置

请求

参数

poseType : 目标位姿存储类型
poseIndex : 3 个目标位置的索引
speedValue : 移动速度的值
speedRatio : 移动速度的比率
smoothType : 平滑类型
smoothDistance : 平滑距离
extraParam : 额外参数

返回

值
StatusCode: 运动指令执行结果

4.10.5 Jump3 三点跳跃指令

4.10.6 Jump3CP 三点跳跃 CP 指令

4.10 BasScript脚本程序类 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 228 / 284

方法名
BasScript.BasMotion.Jump3CP(poseType, poseIndex, speedValue, smoothType,
smoothDistance, extraParam)

描述 JUMP3CP 指令，机器人点对点移动到指定位置

请求参

数

poseType : 目标位姿存储类型
poseIndex : 3 个目标位置的索引
speedValue : 移动速度的值
smoothType : 平滑类型
smoothDistance : 平滑距离
extraParam : 额外参数

返回值 StatusCode: 运动指令执行结果

方法名 ExtraParam.Acceleration(double value)

描述 设置附加加速度参数

请求参数 value : double 加速度值，范围为 1~120

返回值 StatusCode: 参数设置执行结果

方法名 ExtraParam.RTCP()

描述 设置 RTCP（Real-Time Control Protocol）参数

请求参数 无参数

返回值 StatusCode: 参数设置执行结果

方法名 ExtraParam.Offset(int index)

描述 设置坐标偏移参数

请求参数 index : int 偏移用的 PR 索引

返回值 StatusCode: 参数设置执行结果

4.10.7 ExtraParam 额外参数类

4.10 BasScript脚本程序类 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 229 / 284

方法名 ExtraParam.TB(double second, string type, string name)

描述 设置在当前指令运行后执行程序指令的延时参数

请求参数

second : double 延时秒数
type : string 指令类型
name : string 程序名称

返回值 StatusCode: 参数设置执行结果

方法名 ExtraParam.TB(double second, string type, int index, int status)

描述 设置在当前指令运行后给指定 IO 赋值的延时参数

请求参数

second : double 延时秒数
type : string IO 类型
index : int IO 索引
status : int 要赋予的状态

返回值 StatusCode: 参数设置执行结果

方法名 ExtraParam.SKIP(int index)

描述 设置跳转指令参数

请求参数 index : int 跳转到指定的 LABEL 序号

返回值 StatusCode: 参数设置执行结果

方法名 BasScript.AssignValue(param1, index, param2, value, optIndex, optValue)

描述 执行赋值指令

请求参数 param1 : 参数 1 类型
index : 参数 1 索引
param2 : 参数 2 类型
value : 参数 2 值

4.10.8 AssignValue 赋值指令

4.10 BasScript脚本程序类 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 230 / 284

方法名 BasScript.AssignValue(param1, index, param2, value, optIndex, optValue)

optIndex : 参数 1 附加索引
optValue : 参数 2 附加值

返回值 StatusCode: 赋值指令执行结果

方法名 BasScript.AssignValue(param, index, value)

描述 为指定变量赋值

请求参数

param : 参数类型（AssignType）
index : int 索引（整数）
value : 值（IOStatus、double 或 string）

返回值 StatusCode: 赋值操作执行结果

示例代码

4.10.9 AssignValue 赋值指令

using Agilebot.IR;

using Agilebot.IR.Types;

using Agilebot.IR.BasScript;

public class Test

{

 public static async Task Main()

 {

 string controllerIP = "10.27.1.254";

 // 初始化捷勃特机器人

 Arm controller = new Arm(controllerIP);

 // 连接捷勃特机器人

 StatusCode code = await controller.Connect();

 Console.WriteLine(code != StatusCode.OK ? code.GetDescription() : "Successf

ully connected.");

 // 生成脚本程序

cs

4.10 BasScript脚本程序类 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 231 / 284

方法名 BasScript.BasLogical.IF(param1, index, param2, value, operatorType)

描述 添加一个逻辑 IF 语句到脚本中

请求参数

param1 : 第一个参数，类型为 RegisterType 或 IOType
index : 索引（整数）
param2 : 第二个参数，类型为 RegisterType、IOType 或 OtherType
value : 值，类型为索引、数值、字符串或 IOStatus
operatorType : 布尔操作符，默认为等于

返回值 StatusCode: 函数执行结果

4.10.10 IF 条件指令

4.10.11 ELSE_IF 条件分支指令

 BasScript script = new BasScript("test");

 code = script.BasMotion.MoveJoint(MovePoseType.PR, 1, SpeedType.VALUE, 25,

SmoothType.FINE);

 BasScript.ExtraParam param = new();

 param.Acceleration(80);

 code = script.BasMotion.MoveJoint(MovePoseType.PR, 2, SpeedType.VALUE, 50,

SmoothType.FINE, extraParam: param);

 // 执行脚本程序

 code = controller.Execution.ExecuteBasScript(script);

 // 关闭连接

 code = controller.Disconnect();

 Console.WriteLine(code != StatusCode.OK ? code.GetDescription() : "Successf

ully disconnected.");

 }

}

4.10 BasScript脚本程序类 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 232 / 284

方法名 BasScript.BasLogical.ELSE_IF(param1, index, param2, value, operatorType)

描述 添加一个逻辑 ELSE IF 语句到脚本中

请求参数

param1 : 第一个参数，类型为 RegisterType 或 IOType
index : 索引（整数）
param2 : 第二个参数，类型为 RegisterType、IOType 或 OtherType
value : 值，类型为索引、数值、字符串或 IOStatus
operatorType : 布尔操作符，默认为等于

返回值 StatusCode: 函数执行结果

方法名 BasScript.BasLogical.ELSE()

描述 添加一个逻辑 ELSE 语句到脚本中

请求参数 无

返回值 StatusCode: 函数执行结果

方法名 BasScript.BasLogical.END_IF()

描述 结束逻辑 IF 语句

请求参数 无

返回值 StatusCode: 函数执行结果

示例代码

4.10.12 ELSE 否则指令

4.10.13 END_IF 结束条件指令

using Agilebot.IR;

using Agilebot.IR.Types;

using Agilebot.IR.BasScript;

cs

4.10 BasScript脚本程序类 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 233 / 284

4.10.14 WHILE 循环指令

public class Test

{

 public static async Task Main()

 {

 string controllerIP = "10.27.1.254";

 // 初始化捷勃特机器人

 Arm controller = new Arm(controllerIP);

 // 连接捷勃特机器人

 StatusCode code = await controller.Connect();

 Console.WriteLine(code != StatusCode.OK ? code.GetDescription() : "Successf

ully connected.");

 // 生成脚本程序

 BasScript script = new BasScript("test");

 code = script.BasLogical.IF(RegisterType.R, 1, OtherType.VALUE, 1);

 code = script.BasMotion.MoveJoint(MovePoseType.PR, 1, SpeedType.VALUE, 25,

SmoothType.FINE);

 code = script.BasLogical.ELSE_IF(RegisterType.R, 1, OtherType.VALUE, 2);

 code = script.BasMotion.MoveJoint(MovePoseType.PR, 2, SpeedType.VALUE, 50,

SmoothType.FINE);

 code = script.BasLogical.ELSE();

 code = script.BasMotion.MoveJoint(MovePoseType.PR, 3, SpeedType.VALUE, 50,

SmoothType.FINE);

 code = script.BasLogical.END_IF();

 // 执行脚本程序

 code = controller.Execution.ExecuteBasScript(script);

 // 关闭连接

 code = controller.Disconnect();

 Console.WriteLine(code != StatusCode.OK ? code.GetDescription() : "Successf

ully disconnected.");

 }

}

4.10 BasScript脚本程序类 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 234 / 284

方法名 BasScript.BasLogical.WHILE(param1, index, param2, value, operatorType)

描述 添加一个逻辑 WHILE 语句到脚本中

请求参数

param1 : 第一个参数，类型为 RegisterType 或 IOType
index : 索引（整数）
param2 : 第二个参数，类型为 RegisterType、IOType 或 OtherType
value : 值，类型为索引、数值、字符串或 IOStatus
operatorType : 布尔操作符，默认为等于

返回值 StatusCode: 函数执行结果

方法名 BasScript.BasLogical.END_WHILE()

描述 结束逻辑 While 语句

请求参数 无

返回值 StatusCode: 函数执行结果

示例代码

4.10.15 END_WHILE 结束循环指令

using Agilebot.IR;

using Agilebot.IR.Types;

using Agilebot.IR.BasScript;

public class Test

{

 public static async Task Main()

 {

 string controllerIP = "10.27.1.254";

 // 初始化捷勃特机器人

 Arm controller = new Arm(controllerIP);

 // 连接捷勃特机器人

 StatusCode code = await controller.Connect();

 Console.WriteLine(code != StatusCode.OK ? code.GetDescription() : "Successf

cs

4.10 BasScript脚本程序类 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 235 / 284

方法名 BasScript.BasLogical.SWITCH(param, index)

描述 添加一个逻辑 SWITCH 语句到脚本中

请求参数
param : 参数，类型为 RegisterType 或 IOType
index : 参数的索引

返回值 StatusCode: 函数执行结果

方法名 BasScript.BasLogical.CASE(param, value)

描述 添加一个逻辑 CASE 语句到脚本中

4.10.16 SWITCH 多分支选择指令

4.10.17 CASE 分支指令

ully connected.");

 // 生成脚本程序

 BasScript script = new BasScript("test");

 code = script.BasLogical.WHILE(IOType.DO, 1, OtherType.IO_STATUS, IOStatus.

ON);

 code = script.BasMotion.MoveJoint(MovePoseType.PR, 1, SpeedType.VALUE, 25,

SmoothType.FINE);

 code = script.BasLogical.END_WHILE();

 // 执行脚本程序

 code = controller.Execution.ExecuteBasScript(script);

 // 关闭连接

 code = controller.Disconnect();

 Console.WriteLine(code != StatusCode.OK ? code.GetDescription() : "Successf

ully disconnected.");

 }

}

4.10 BasScript脚本程序类 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 236 / 284

方法名 BasScript.BasLogical.CASE(param, value)

请求参数
param : 参数，类型为 RegisterType、IOType 或 OtherType
value : 值，类型为索引、数值、字符串

返回值 StatusCode: 函数执行结果

方法名 BasScript.BasLogical.DEFAULT()

描述 添加一个逻辑 DEFAULT 语句到脚本中

请求参数 无

返回值 StatusCode: 函数执行结果

方法名 BasScript.BasLogical.END_SWITCH()

描述 结束逻辑 SWITCH 语句

请求参数 无

返回值 StatusCode: 函数执行结果

方法名 BasScript.BasLogical.SKIP_CONDITION(param1, index, param2, value, operatorType)

描述 添加一个逻辑 SKIP CONDITION 语句到脚本中

请求参数 param1 : 第一个参数，类型为 RegisterType 或 IOType
index : 参数一的索引

4.10.18 DEFAULT 默认分支指令

4.10.19 END_SWITCH 结束多分支选择指令

4.10.20 SKIP_CONDITION 跳过条件指令

4.10 BasScript脚本程序类 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 237 / 284

方法名 BasScript.BasLogical.SKIP_CONDITION(param1, index, param2, value, operatorType)

param2 : 第二个参数，类型为 RegisterType、IOType 或 OtherType
value : 值，类型为索引、数值、字符串或 IOStatus
operatorType : 布尔操作符，默认为等于

返回值 StatusCode: 函数执行结果

方法名 BasScript.BasStructure.WAIT(param1, index, param2, value, operatorType)

描述 添加一个逻辑 WAIT COND 语句到脚本中

请求参数

param1 : 第一个参数，类型为 RegisterType 或 IOType
index : 参数一的索引
param2 : 第二个参数，类型为 ValuesType、IOType 或 OtherType
value : 值，类型为索引、数值、字符串或 IOStatus
operatorType : 布尔操作符，默认为等于

返回值 StatusCode: 函数执行结果

方法名 BasScript.BasStructure.WAIT_TIME(param, value)

描述 WAIT TIME 等待一定时间

请求参数
param : 参数类型
value : 等待的时间值

返回值 StatusCode: 函数执行结果

4.10.21 WAIT 等待条件指令

4.10.22 WAIT_TIME 等待时间指令

4.10.23 GOTO 跳转指令

4.10 BasScript脚本程序类 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 238 / 284

方法名 BasScript.BasLogical.GOTO(index)

描述 GOTO 跳转语句

请求参数 index : 目标标签的索引

返回值 StatusCode: 函数执行结果

方法名 BasScript.BasLogical.LABEL(index)

描述 LABEL 语句

请求参数 index : 标签的索引

返回值 StatusCode: 函数执行结果

方法名 BasScript.BasLogical.BREAK()

描述 BREAK 语句

请求参数 无

返回值 StatusCode: 函数执行结果

方法名 BasScript.BasLogical.CONTINUE()

描述 CONTINUE 语句

请求参数 无

4.10.24 LABEL 标签指令

4.10.25 BREAK 跳出循环指令

4.10.26 CONTINUE 跳过循环指令

4.10 BasScript脚本程序类 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 239 / 284

方法名 BasScript.BasLogical.CONTINUE()

返回值 StatusCode: 函数执行结果

方法名 BasScript.BasStructure.PAUSE()

描述 PAUSE 语句

请求参数 无

返回值 StatusCode: 函数执行结果

方法名 BasScript.BasStructure.ABORT()

描述 ABORT 语句

请求参数 无

返回值 StatusCode: 函数执行结果

方法名 BasScript.BasStructure.CALL(name)

描述 CALL 同步调用程序

请求参数 name : 程序名

返回值 StatusCode: 函数执行结果

4.10.27 PAUSE 暂停指令

4.10.28 ABORT 中断指令

4.10.29 CALL 同步调用程序指令

4.10 BasScript脚本程序类 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 240 / 284

方法名 BasScript.BasStructure.RUN(name)

描述 RUN 异步调用程序

请求参数 name : 程序名

返回值 StatusCode: 函数执行结果

方法名 BasScript.BasStructure.LOAD(param, value)

描述 LOAD 载入程序

请求参数
param : 参数，R 寄存器、SR 寄存器、数值或字符串
value : 参数的值，数值或字符串

返回值 StatusCode: 函数执行结果

方法名 BasScript.BasStructure.UNLOAD(param, value)

描述 UNLOAD 卸载程序

请求参数
param : 参数，R 寄存器、SR 寄存器、数值或字符串
value : 参数的值，数值或字符串

返回值 StatusCode: 函数执行结果

4.10.30 RUN 异步调用程序指令

4.10.31 LOAD 加载程序指令

4.10.32 UNLOAD 卸载程序指令

4.10.33 EXEC 执行程序指令

4.10 BasScript脚本程序类 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 241 / 284

方法名 BasScript.BasStructure.EXEC(param, value)

描述 EXEC 执行程序

请求参数
param : 参数，R 寄存器、SR 寄存器、数值或字符串
value : 参数的值，数值或字符串

返回值 StatusCode: 函数执行结果

方法名 BasScript.BasSocket.OPEN(index)

描述 SOCKET OPEN 打开 socket 连接

请求参数 index : SK 寄存器序号

返回值 StatusCode: 函数执行结果

方法名 BasScript.BasSocket.CLOSE(index)

描述 SOCKET CLOSE 关闭 socket 连接

请求参数 index : SK 寄存器序号

返回值 StatusCode: 函数执行结果

方法名 BasScript.BasSocket.CONNECT(index)

描述 SOCKET CONNECT 连接 socket

4.10.34 OPEN 打开 socket 连接指令

4.10.35 CLOSE 关闭 socket 连接指令

4.10.36 CONNECT 连接 socket 指令

4.10 BasScript脚本程序类 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 242 / 284

方法名 BasScript.BasSocket.CONNECT(index)

请求参数 index : SK 寄存器序号

返回值 StatusCode: 函数执行结果

方法名 BasScript.BasSocket.SEND(index, msgType, value)

描述 SOCKET SEND 通过 socket 发送数据

请求参数

index : SK 寄存器序号
msgType : 消息类型
value : 消息内容或序号

返回值 StatusCode: 函数执行结果

方法名 BasScript.BasSocket.RECV(index, msgLength, msgType, value)

描述 SOCKET RECV 接收 socket 数据

请求参数

index : SK 寄存器序号
msgLength : 消息长度
msgType : 消息类型
value : 消息内容或序号

返回值 StatusCode: 函数执行结果

4.10.37 SEND 发送 socket 数据指令

4.10.38 RECV 接收 socket 数据指令

4.10.39 READ_MH 读取 Modbus 保持寄存器指令

4.10 BasScript脚本程序类 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 243 / 284

方法名 BasScript.BasModbus.READ_MH(index, id, address, length, rIndex)

描述 READ MH 读取 Modbus 保持寄存器

请求参数

index : 通道序号
id : Modbus ID
address : 寄存器地址
length : 寄存器长度
rIndex : 写入的 R 寄存器序号

返回值 StatusCode: 函数执行结果

方法名 BasScript.BasModbus.READ_MI(index, id, address, length, rIndex)

描述 READ MI 读取 Modbus 输入寄存器

请求参数

index : 通道序号
id : Modbus ID
address : 寄存器地址
length : 寄存器长度
rIndex : 写入的 R 寄存器序号

返回值 StatusCode: 函数执行结果

方法名 BasScript.BasModbus.WRITE_MH(index, id, address, length, valueType, value)

描述 WRITE MH 用于写入 Modbus 保持寄存器

请求参数 index : 通道序号
id : Modbus ID
address : 寄存器地址
length : 寄存器长度

4.10.40 READ_MI 读取 Modbus 输入寄存器指令

4.10.41 WRITE_MH 写入 Modbus 保持寄存器指令

4.10 BasScript脚本程序类 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 244 / 284

方法名 BasScript.BasModbus.WRITE_MH(index, id, address, length, valueType, value)

valueType : 值类型
value : 值或索引

返回值 StatusCode: 函数执行结果

方法名 BasScript.BasVision.FIND(name)

描述 VISION FIND 寻找视觉程序

请求参数 name : 视觉程序名称

返回值 StatusCode: 函数执行结果

方法名 BasScript.BasVision.GET_OFFSET(name, index, labelIndex)

描述 VISION GET OFFSET 获取视觉程序偏移量

请求参数

name : 视觉程序名称
index : 视觉寄存器索引
labelIndex : 标签索引

返回值 StatusCode: 函数执行结果

方法名 BasScript.BasVision.GET_QUANTITY(name, index)

描述 VISION GET QUANTITY 获取视觉程序结果

4.10.42 FIND 寻找视觉程序指令

4.10.43 GET_OFFSET 获取视觉程序偏移量指令

4.10.44 GET_QUANTITY 获取视觉程序结果指令

4.10 BasScript脚本程序类 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 245 / 284

方法名 BasScript.BasVision.GET_QUANTITY(name, index)

请求参数
name : 视觉程序名称
index : R 寄存器索引

返回值 StatusCode: 函数执行结果

方法名 BasScript.SetParam(type, valueType, value)

描述 SET PARAM 设置参数

请求参数

type : 参数类型
valueType : 值类型
value : 值

返回值 StatusCode: 函数执行结果

4.10.45 SetParam 设置参数指令

4.10 BasScript脚本程序类 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 246 / 284

方法名 CoordinateSystem.Get(CoordinateType type , int index)

描述 根据指定的坐标系类型和索引，获取对应的坐标系信息

请求参数
type : CoordinateType 坐标系类型
index : int 坐标系索引

返回值
Coordinate: 坐标系信息数据
StatusCode: 获取操作执行结果

兼容的机器人软件版本
协作 (Copper): v7.5.0.0+
工业 (Bronze): v7.5.0.0+

方法名
CoordinateSystem.Update(CoordinateType type , Coordinate coordinate

)

描述 根据指定的坐标系类型和坐标系信息，更新对应的坐标系

请求参数
type : CoordinateType 坐标系类型
coordinate : Coordinate 要更新的坐标系信息

返回值 StatusCode: 更新操作执行结果

兼容的机器人软件版

本

协作 (Copper): v7.5.0.0+
工业 (Bronze): v7.5.0.0+

4.11 坐标系类

4.11.1 获取指定坐标系信息

4.11.2 更新坐标系信息

4.11 坐标系类 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 247 / 284

方法名 CoordinateSystem.Add(CoordinateType type , Coordinate coordinate)

描述 根据指定的坐标系类型和坐标系信息，添加一个新的坐标系

请求参数
type : CoordinateType 坐标系类型
coordinate : Coordinate 要添加的坐标系信息

返回值 StatusCode: 添加操作执行结果

兼容的机器人软件版本
协作 (Copper): v7.5.0.0+
工业 (Bronze): v7.5.0.0+

方法名 CoordinateSystem.Delete(CoordinateType type , int index)

描述 根据指定的坐标系类型和索引，删除对应的坐标系信息

请求参数
type : CoordinateType 坐标系类型
index : int 坐标系索引

返回值 StatusCode: 删除操作执行结果

兼容的机器人软件版本
协作 (Copper): v7.5.0.0+
工业 (Bronze): v7.5.0.0+

方法名 CoordinateSystem.GetCoordinateList(CoordinateType type)

描述 根据指定的坐标系类型，获取所有坐标系信息的列表

请求参数 type : CoordinateType 坐标系类型

4.11.3 添加坐标系信息

4.11.4 删除指定坐标系信息

4.11.5 获取坐标系信息列表

4.11 坐标系类 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 248 / 284

方法名 CoordinateSystem.GetCoordinateList(CoordinateType type)

返回值
List<[CoordSummary][#3.22.2]>: 坐标系信息列表
StatusCode: 获取操作执行结果

兼容的机器人软件版本
协作 (Copper): v7.5.0.0+
工业 (Bronze): v7.5.0.0+

示例代码

CoordinateSystem/TFCoordinateTest.cs

using Agilebot.IR;

using Agilebot.IR.CoordinateSystem;

using Agilebot.IR.Types;

public class TFCoordinateTest

{

 /// <summary>

 /// 测试 TF 坐标系的计算、添加、获取列表、获取单个坐标系、更新和删除操作

 /// </summary>

 public static StatusCode Run(

 string controllerIP,

 bool useLocalProxy = true

)

 {

 // [ZH] 初始化捷勃特机器人

 // [EN] Initialize the Agilebot robot

 Arm controller = new Arm(

 controllerIP,

 useLocalProxy

);

 // [ZH] 连接捷勃特机器人

 // [EN] Connect to the Agilebot robot

 StatusCode code = controller.ConnectSync();

 Console.WriteLine(

 code != StatusCode.OK

 ? code.GetDescription()

 : "连接成功/Successfully connected."

);

cs

4.11 坐标系类 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 249 / 284

 if (code != StatusCode.OK)

 {

 return code;

 }

 try

 {

 // [ZH] 准备测试数据

 // [EN] Prepare test data

 var poseData = new List<Position>

 {

 new Position(

 847.0999429718556,

 166.7999999999656,

 276.8195498896624,

 90,

 0,

 -70

),

 new Position(

 809.0227439212846,

 166.79999999994843,

 459.80354972094295,

 90,

 0,

 -45

),

 new Position(

 717.1223240422377,

 166.79999999993265,

 654.0891675073312,

 90,

 0,

 -30

),

 new Position(

 572.917828754028,

 166.79999999992168,

 825.1862002007621,

 90,

 0,

4.11 坐标系类 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 250 / 284

 -40

),

 };

 Console.WriteLine(

 "开始TF坐标系测试/Starting TF Coordinate Test"

);

 // [ZH] 计算坐标系

 // [EN] Calculate coordinate system

 Coordinate calculatedCoord = new Coordinate();

 (Position coord, StatusCode calculateCode) =

 controller.CoordinateSystem.Calculate(

 CoordinateType.ToolCoordinate,

 poseData

);

 if (code == StatusCode.OK)

 {

 Console.WriteLine(

 "计算TF坐标系成功/Calculate TF Coordinate Success"

);

 }

 else

 {

 Console.WriteLine(

 $"计算TF坐标系失败/Calculate TF Coordinate Failed: {code.GetDesc

ription()}"

);

 return code;

 }

 calculatedCoord.Id = 5;

 calculatedCoord.Data = coord;

 // [ZH] 删除可能存在的坐标系

 // [EN] Delete existing coordinate if exists

 StatusCode deleteCode =

 controller.CoordinateSystem.Delete(

 CoordinateType.ToolCoordinate,

 calculatedCoord.Id

);

 Console.WriteLine(

4.11 坐标系类 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 251 / 284

 $"删除现有坐标系/Delete Existing Coordinate: {deleteCode.GetDescript

ion()}"

);

 // [ZH] 添加坐标系

 // [EN] Add coordinate system

 StatusCode addCode =

 controller.CoordinateSystem.Add(

 CoordinateType.ToolCoordinate,

 calculatedCoord

);

 if (addCode == StatusCode.OK)

 {

 Console.WriteLine(

 "添加TF坐标系成功/Add TF Coordinate Success"

);

 }

 else

 {

 Console.WriteLine(

 $"添加TF坐标系失败/Add TF Coordinate Failed: {addCode.GetDescrip

tion()}"

);

 return addCode;

 }

 // [ZH] 获取坐标系列表

 // [EN] Get coordinate list

 List<CoordSummary> listRes;

 (listRes, code) =

 controller.CoordinateSystem.GetCoordinateList(

 CoordinateType.ToolCoordinate

);

 if (code == StatusCode.OK)

 {

 Console.WriteLine(

 "获取TF坐标系列表成功/Get TF Coordinate List Success"

);

 Console.WriteLine(

 $"坐标系列表数量/Coordinate List Count: {listRes.Count}"

);

 }

4.11 坐标系类 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 252 / 284

 else

 {

 Console.WriteLine(

 $"获取TF坐标系列表失败/Get TF Coordinate List Failed: {code.GetD

escription()}"

);

 return code;

 }

 // [ZH] 获取单个坐标系

 // [EN] Get single coordinate

 Coordinate getCoord;

 (getCoord, code) =

 controller.CoordinateSystem.Get(

 CoordinateType.ToolCoordinate,

 calculatedCoord.Id

);

 if (code == StatusCode.OK)

 {

 Console.WriteLine(

 "获取TF坐标系成功/Get TF Coordinate Success"

);

 Console.WriteLine(

 $"坐标系名称/Coordinate Name: {getCoord.Name}"

);

 }

 else

 {

 Console.WriteLine(

 $"获取TF坐标系失败/Get TF Coordinate Failed: {code.GetDescriptio

n()}"

);

 return code;

 }

 // [ZH] 更新坐标系

 // [EN] Update coordinate system

 getCoord.Name = "test";

 StatusCode updateCode =

 controller.CoordinateSystem.Update(

 CoordinateType.ToolCoordinate,

 getCoord

4.11 坐标系类 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 253 / 284

);

 if (updateCode == StatusCode.OK)

 {

 Console.WriteLine(

 "更新TF坐标系成功/Update TF Coordinate Success"

);

 }

 else

 {

 Console.WriteLine(

 $"更新TF坐标系失败/Update TF Coordinate Failed: {updateCode.GetD

escription()}"

);

 return updateCode;

 }

 // [ZH] 删除坐标系

 // [EN] Delete coordinate system

 deleteCode = controller.CoordinateSystem.Delete(

 CoordinateType.ToolCoordinate,

 calculatedCoord.Id

);

 if (deleteCode == StatusCode.OK)

 {

 Console.WriteLine(

 "删除TF坐标系成功/Delete TF Coordinate Success"

);

 }

 else

 {

 Console.WriteLine(

 $"删除TF坐标系失败/Delete TF Coordinate Failed: {deleteCode.GetD

escription()}"

);

 return deleteCode;

 }

 Console.WriteLine(

 "TF坐标系测试完成/TF Coordinate Test Completed"

);

 }

 catch (Exception ex)

4.11 坐标系类 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 254 / 284

 {

 Console.WriteLine(

 $"执行过程中发生异常/Exception occurred during execution: {ex.Messag

e}"

);

 code = StatusCode.OtherReason;

 }

 finally

 {

 // [ZH] 关闭连接

 // [EN] Close the connection

 StatusCode disconnectCode =

 controller.Disconnect();

 if (disconnectCode != StatusCode.OK)

 {

 Console.WriteLine(

 disconnectCode.GetDescription()

);

 if (code == StatusCode.OK)

 code = disconnectCode;

 }

 }

 return code;

 }

}

4.11 坐标系类 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 255 / 284

方法名
Jogging.Move(int ajNum , MoveMode moveMode , double stepLength = 0, double
stepAngle = 0)

描述 控制机器人以连续运动或者根据进给量运动

请求参数

ajNum : int 数值 1~6 对应关节值号 [1 ~ 6]，或笛卡尔坐标系 x, y, z, rx, ry, rz，具体取决
于当前示教的坐标系。正数代表正方向运动，负数代表负方向运动

moveMode : MoveMode 机械臂运动模式，支持增量运动或连续运动
stepLength : double 步长，单位为 mm 或角度（仅在增量运动模式下有效）
stepAngle : double 步角度，单位为角度（仅在增量运动模式下有效）

返回值 StatusCode: 返回点动是否成功的状态码

兼容的机器

人软件版本

协作 (Copper): v7.5.0.0+
工业 (Bronze): v7.5.0.0+

示例代码

4.12 机器人示教运动

4.12.1 机器人 Jogging 运动

Jogging/StepJogging.cs

using Agilebot.IR;

using Agilebot.IR.Types;

public class StepJogging

{

 public static StatusCode Run(

 string controllerIP,

 bool useLocalProxy = true

)

 {

 // [ZH] 初始化捷勃特机器人

 // [EN] Initialize the Agilebot robot

 Arm controller = new Arm(

cs

4.12 机器人示教运动 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 256 / 284

 controllerIP,

 useLocalProxy

);

 // [ZH] 连接捷勃特机器人

 // [EN] Connect to the Agilebot robot

 StatusCode code = controller.ConnectSync();

 Console.WriteLine(

 code != StatusCode.OK

 ? code.GetDescription()

 : "连接成功/Successfully connected."

);

 if (code != StatusCode.OK)

 {

 return code;

 }

 try

 {

 // [ZH] 获取机器人模式

 // [EN] Get robot mode

 (UserOpMode opMode, StatusCode opCode) =

 controller.GetOpMode();

 if (opCode == StatusCode.OK)

 {

 Console.WriteLine(

 $"当前机器人模式/Current robot mode: {opMode}"

);

 if (

 opMode != UserOpMode.UNLIMITED_MANUAL

 && opMode != UserOpMode.LIMIT_MANUAL

)

 {

 Console.WriteLine(

 $"示教运动必须在机器人手动模式下/Jogging must be in manual mo

de"

);

 return StatusCode.OtherReason;

 }

 }

 else

4.12 机器人示教运动 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 257 / 284

 {

 Console.WriteLine(

 $"获取机器人模式失败/Failed to get robot mode: {opCode.GetDescri

ption()}"

);

 }

 // [ZH] 设置单步示教运动参数

 // [EN] Set step jogging parameters

 int ajNum = 1; // 轴序号，正数表示正方向运动

 MoveMode moveMode = MoveMode.Stepping; // 单步运动模式

 double stepLength = 5.0; // 步长，单位为mm或角度

 double stepAngle = 5.0; // 轴旋转角度，单位为角度

 Console.WriteLine(

 "开始单步示教运动/Starting Step Jogging"

);

 Console.WriteLine(

 $"轴序号/Axis Number: {ajNum}"

);

 Console.WriteLine(

 $"运动模式/Move Mode: {moveMode}"

);

 Console.WriteLine(

 $"步长/Step Length: {stepLength}"

);

 // [ZH] 执行单步示教运动

 // [EN] Execute step jogging movement

 code = controller.Jogging.Move(

 ajNum,

 moveMode,

 stepLength,

 stepAngle

);

 if (code == StatusCode.OK)

 {

 Console.WriteLine(

 "单步示教运动执行成功/Step Jogging Executed Successfully"

);

 Console.WriteLine(

 $"轴{ajNum}向正方向移动{stepLength}单位/Axis {ajNum} moved {step

4.12 机器人示教运动 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 258 / 284

Length} units in positive direction"

);

 }

 else

 {

 Console.WriteLine(

 $"单步示教运动执行失败/Step Jogging Execution Failed: {code.GetD

escription()}"

);

 }

 // [ZH] 等待一秒后执行反向运动

 // [EN] Wait one second then execute reverse movement

 Thread.Sleep(1000);

 // [ZH] 执行反向单步运动

 // [EN] Execute reverse step movement

 int reverseAjNum = -ajNum; // 负数表示负方向运动

 code = controller.Jogging.Move(

 reverseAjNum,

 moveMode,

 stepLength,

 stepAngle

);

 if (code == StatusCode.OK)

 {

 Console.WriteLine(

 "反向单步示教运动执行成功/Reverse Step Jogging Executed Successfu

lly"

);

 Console.WriteLine(

 $"轴{Math.Abs(reverseAjNum)}向负方向移动{stepLength}单位/Axis {M

ath.Abs(reverseAjNum)} moved {stepLength} units in negative direction"

);

 }

 else

 {

 Console.WriteLine(

 $"反向单步示教运动执行失败/Reverse Step Jogging Execution Failed:

{code.GetDescription()}"

);

 }

4.12 机器人示教运动 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 259 / 284

方法名 Jogging.MultiMove(int[] ajNums)

描述 控制机器人多轴同时连续运动

请求参数
ajNums : int [] 数值 1~6 对应关节值号 [1 ~ 6]，或笛卡尔坐标系 x, y, z, rx, ry, rz，具体取
决于当前示教的坐标系。正数代表正方向运动，负数代表负方向运动

返回值 StatusCode: 返回点动是否成功的状态码

4.12.2 机器人多轴同时连续运动

 }

 catch (Exception ex)

 {

 Console.WriteLine(

 $"执行过程中发生异常/Exception occurred during execution: {ex.Messag

e}"

);

 code = StatusCode.OtherReason;

 }

 finally

 {

 // [ZH] 关闭连接

 // [EN] Close the connection

 StatusCode disconnectCode =

 controller.Disconnect();

 if (disconnectCode != StatusCode.OK)

 {

 Console.WriteLine(

 disconnectCode.GetDescription()

);

 if (code == StatusCode.OK)

 code = disconnectCode;

 }

 }

 return code;

 }

}

4.12 机器人示教运动 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 260 / 284

方法名 Jogging.MultiMove(int[] ajNums)

兼容的机器

人软件版本

协作 (Copper): v7.5.0.0+
工业 (Bronze): v7.5.0.0+

示例代码

Jogging/MultiJogging.cs

using Agilebot.IR;

using Agilebot.IR.Jogging;

using Agilebot.IR.Types;

public class MultiJogging

{

 public static StatusCode Run(

 string controllerIP,

 bool useLocalProxy = true

)

 {

 // [ZH] 初始化捷勃特机器人

 // [EN] Initialize the Agilebot robot

 Arm controller = new Arm(

 controllerIP,

 useLocalProxy

);

 // [ZH] 连接捷勃特机器人

 // [EN] Connect to the Agilebot robot

 StatusCode code = controller.ConnectSync();

 Console.WriteLine(

 code != StatusCode.OK

 ? code.GetDescription()

 : "连接成功/Successfully connected."

);

 if (code != StatusCode.OK)

 {

 return code;

 }

cs

4.12 机器人示教运动 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 261 / 284

 try

 {

 // [ZH] 获取机器人模式

 // [EN] Get robot mode

 (UserOpMode opMode, StatusCode opCode) =

 controller.GetOpMode();

 if (opCode == StatusCode.OK)

 {

 Console.WriteLine(

 $"当前机器人模式/Current robot mode: {opMode}"

);

 if (

 opMode != UserOpMode.UNLIMITED_MANUAL

 && opMode != UserOpMode.LIMIT_MANUAL

)

 {

 Console.WriteLine(

 $"示教运动必须在机器人手动模式下/Jogging must be in manual mo

de"

);

 return StatusCode.OtherReason;

 }

 }

 else

 {

 Console.WriteLine(

 $"获取机器人模式失败/Failed to get robot mode: {opCode.GetDescri

ption()}"

);

 }

 Console.WriteLine(

 "开始多轴示教运动/Starting Multi-axis Jogging"

);

 Console.WriteLine(

 "演示多轴运动/Demo multi-axis step movements"

);

 // [ZH] 多轴运动

 // [EN] Multi-axis step movement

 Console.WriteLine(

 "\n=== 多轴运动/Multi-axis Step Movement ==="

4.12 机器人示教运动 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 262 / 284

);

 int[] axes = { 1, 2, 3 }; // 正方向运动

 code = controller.Jogging.MultiMove(axes);

 if (code == StatusCode.OK)

 {

 Console.WriteLine(

 "连续示教运动启动成功/Continuous Jogging Started Successfully"

);

 Console.WriteLine(

 "运动3秒后自动停止/Moving for 3 seconds then auto stop"

);

 // [ZH] 运动3秒

 // [EN] Move for 3 seconds

 Thread.Sleep(3000);

 // [ZH] 停止示教运动

 // [EN] Stop jogging movement

 controller.Jogging.Stop();

 Console.WriteLine(

 "示教运动已停止/Jogging Movement Stopped"

);

 }

 else

 {

 Console.WriteLine(

 $"连续示教运动启动失败/Continuous Jogging Start Failed: {code.Ge

tDescription()}"

);

 }

 Console.WriteLine(

 "\n多轴示教运动完成/Multi-axis Jogging Completed"

);

 }

 catch (Exception ex)

 {

 Console.WriteLine(

 $"执行过程中发生异常/Exception occurred during execution: {ex.Messag

e}"

);

4.12 机器人示教运动 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 263 / 284

方法名 Jogging.Stop()

描述 停止运动

请求参数 无

返回值 void

备注 仅在连续运动模式下需要使用此方法停止运动

兼容的机器人软件版本
协作 (Copper): v7.5.0.0+
工业 (Bronze): v7.5.0.0+

示例代码

4.12.3 停止机器人 Jogging 运动

 code = StatusCode.OtherReason;

 }

 finally

 {

 // [ZH] 关闭连接

 // [EN] Close the connection

 StatusCode disconnectCode =

 controller.Disconnect();

 if (disconnectCode != StatusCode.OK)

 {

 Console.WriteLine(

 disconnectCode.GetDescription()

);

 if (code == StatusCode.OK)

 code = disconnectCode;

 }

 }

 return code;

 }

}

4.12 机器人示教运动 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 264 / 284

Jogging/ContinuousJogging.cs

using Agilebot.IR;

using Agilebot.IR.Types;

public class ContinuousJogging

{

 public static StatusCode Run(

 string controllerIP,

 bool useLocalProxy = true

)

 {

 // [ZH] 初始化捷勃特机器人

 // [EN] Initialize the Agilebot robot

 Arm controller = new Arm(

 controllerIP,

 useLocalProxy

);

 // [ZH] 连接捷勃特机器人

 // [EN] Connect to the Agilebot robot

 StatusCode code = controller.ConnectSync();

 Console.WriteLine(

 code != StatusCode.OK

 ? code.GetDescription()

 : "连接成功/Successfully connected."

);

 if (code != StatusCode.OK)

 {

 return code;

 }

 try

 {

 // [ZH] 获取机器人模式

 // [EN] Get robot mode

 (UserOpMode opMode, StatusCode opCode) =

 controller.GetOpMode();

 if (opCode == StatusCode.OK)

 {

cs

4.12 机器人示教运动 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 265 / 284

 Console.WriteLine(

 $"当前机器人模式/Current robot mode: {opMode}"

);

 if (

 opMode != UserOpMode.UNLIMITED_MANUAL

 && opMode != UserOpMode.LIMIT_MANUAL

)

 {

 Console.WriteLine(

 $"示教运动必须在机器人手动模式下/Jogging must be in manual mo

de"

);

 return StatusCode.OtherReason;

 }

 }

 else

 {

 Console.WriteLine(

 $"获取机器人模式失败/Failed to get robot mode: {opCode.GetDescri

ption()}"

);

 }

 // [ZH] 设置示教运动参数

 // [EN] Set jogging parameters

 int ajNum = 3; // 轴序号，正数表示正方向运动

 MoveMode moveMode = MoveMode.Continuous; // 连续运动模式

 Console.WriteLine(

 "开始连续示教运动/Starting Continuous Jogging"

);

 Console.WriteLine(

 $"轴序号/Axis Number: {ajNum}"

);

 Console.WriteLine(

 $"运动模式/Move Mode: {moveMode}"

);

 // [ZH] 启动连续示教运动

 // [EN] Start continuous jogging movement

 code = controller.Jogging.Move(ajNum, moveMode);

 if (code == StatusCode.OK)

4.12 机器人示教运动 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 266 / 284

 {

 Console.WriteLine(

 "连续示教运动启动成功/Continuous Jogging Started Successfully"

);

 Console.WriteLine(

 "运动3秒后自动停止/Moving for 3 seconds then auto stop"

);

 // [ZH] 运动3秒

 // [EN] Move for 3 seconds

 Thread.Sleep(3000);

 // [ZH] 停止示教运动

 // [EN] Stop jogging movement

 controller.Jogging.Stop();

 Console.WriteLine(

 "示教运动已停止/Jogging Movement Stopped"

);

 }

 else

 {

 Console.WriteLine(

 $"连续示教运动启动失败/Continuous Jogging Start Failed: {code.Ge

tDescription()}"

);

 }

 }

 catch (Exception ex)

 {

 Console.WriteLine(

 $"执行过程中发生异常/Exception occurred during execution: {ex.Messag

e}"

);

 code = StatusCode.OtherReason;

 }

 finally

 {

 // [ZH] 关闭连接

 // [EN] Close the connection

 StatusCode disconnectCode =

 controller.Disconnect();

 if (disconnectCode != StatusCode.OK)

4.12 机器人示教运动 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 267 / 284

 {

 Console.WriteLine(

 disconnectCode.GetDescription()

);

 if (code == StatusCode.OK)

 code = disconnectCode;

 }

 }

 return code;

 }

}

4.12 机器人示教运动 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 268 / 284

方法名 SubPub.Connect()

描述 连接到机器人控制器的 WebSocket 服务器

请求参数 无

返回值 Task：异步连接操作结果

兼容的机器人软件版本
协作 (Copper): v7.7.0.0+
工业 (Bronze): v7.7.0.0+

方法名 SubPub.Disconnect()

描述 断开与机器人控制器 WebSocket 服务器的连接

请求参数 无

返回值 Task：异步断开操作结果

兼容的机器人软件版本
协作 (Copper): v7.7.0.0+
工业 (Bronze): v7.7.0.0+

4.13 机器人订阅发布接口

4.13.1 连接到 WebSocket 服务器

4.13.2 断开 WebSocket 服务器

4.13.3 添加机器人状态订阅

4.13 机器人订阅发布接口 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 269 / 284

方法名
SubPub.SubscribeStatus(RobotTopicType[] topicTypes , int frequency =
200)

描述 添加机器人状态数据订阅

请求参数
topicTypes : RobotTopicType [] 需要订阅的机器人主题类型列表
frequency : int 订阅频率，单位为 Hz，默认值 200

返回值 Task：异步订阅操作结果

兼容的机器人软件版

本

协作 (Copper): v7.7.0.0+
工业 (Bronze): v7.7.0.0+

方法名
SubPub.SubscribeRegister(RegTopicType regType , int[] regIds , int
frequency = 200)

描述 添加寄存器数据订阅

请求参数

regType : RegTopicType 寄存器类型
regIds : int [] 需要订阅的寄存器 ID 列表
frequency : int 订阅频率，单位为 Hz，默认值 200

返回值 Task：异步订阅操作结果

兼容的机器人软件

版本

协作 (Copper): v7.7.0.0+
工业 (Bronze): v7.7.0.0+

方法名 SubPub.SubscribeIO((IOTopicType, int)[] ioList , int frequency = 200)

描述 订阅 IO 信号数据，包括数字输入输出等

请求参数
ioList : (IOTopicType, int)[] IO 列表，每个元素为 (IO类型, IO ID)

frequency : int 订阅频率，单位为 Hz，默认值 200

4.13.4 添加寄存器订阅

4.13.5 添加 IO 订阅

4.13 机器人订阅发布接口 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 270 / 284

方法名 SubPub.SubscribeIO((IOTopicType, int)[] ioList , int frequency = 200)

返回值 Task：异步订阅操作结果

兼容的机器人软件版本
协作 (Copper): v7.7.0.0+
工业 (Bronze): v7.7.0.0+

方法名
SubPub.StartReceiving(Func<Dictionary<string, object>, Task>
onMessageReceived)

描述 开始接收订阅消息，并通过回调函数处理接收到的数据

请求参数 onMessageReceived : Func<Dictionary<string, object>, Task> 消息接收回调函数

返回值 Task：异步接收任务

兼容的机器人软件

版本

协作 (Copper): v7.7.0.0+
工业 (Bronze): v7.7.0.0+

示例代码

4.13.6 开始接收消息

SubPub/CallbackReceiving.cs

using Agilebot.IR;

using Agilebot.IR.SubPub;

using Agilebot.IR.Types;

public class CallbackReceiving

{

 public static StatusCode Run(

 string controllerIP,

 bool useLocalProxy = true

)

 {

 // [ZH] 初始化捷勃特机器人

 // [EN] Initialize the Agilebot robot

 Arm controller = new Arm(

cs

4.13 机器人订阅发布接口 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 271 / 284

 controllerIP,

 useLocalProxy

);

 // [ZH] 连接捷勃特机器人

 // [EN] Connect to the Agilebot robot

 StatusCode code = controller.ConnectSync();

 Console.WriteLine(

 code != StatusCode.OK

 ? code.GetDescription()

 : "连接成功/Successfully connected."

);

 // [ZH] 初始化捷勃特机器人SubPub

 // [EN] Initialize the Agilebot robot SubPub

 var subPub = controller.SubPub;

 try

 {

 Console.WriteLine(

 "开始回调方式接收消息测试/Starting Callback Receiving Test"

);

 // [ZH] 连接到WebSocket服务器

 // [EN] Connect to WebSocket server

 subPub.Connect().Wait();

 Console.WriteLine(

 "WebSocket连接成功/WebSocket Connected Successfully"

);

 // [ZH] 订阅机器人状态

 // [EN] Subscribe to robot status

 var topicTypes = new RobotTopicType[]

 {

 RobotTopicType.TopicCurrentJoint,

 RobotTopicType.TopicRobotStatus,

 };

 subPub

 .SubscribeStatus(topicTypes, frequency: 100)

 .Wait();

 Console.WriteLine(

 "机器人状态订阅成功/Robot Status Subscription Successful"

4.13 机器人订阅发布接口 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 272 / 284

);

 // [ZH] 订阅寄存器

 // [EN] Subscribe to registers

 var regIds = new int[] { 1, 2, 3 };

 subPub

 .SubscribeRegister(

 RegTopicType.R,

 regIds,

 frequency: 100

)

 .Wait();

 Console.WriteLine(

 "寄存器订阅成功/Register Subscription Successful"

);

 // [ZH] 订阅IO

 // [EN] Subscribe to IO

 var ioList = new (IOTopicType, int)[]

 {

 (IOTopicType.DI, 0),

 (IOTopicType.DO, 1),

 };

 subPub

 .SubscribeIO(ioList, frequency: 100)

 .Wait();

 Console.WriteLine(

 "IO订阅成功/IO Subscription Successful"

);

 int messageCount = 0;

 int maxMessages = 10; // 接收10条消息后停止

 Console.WriteLine(

 "开始接收消息/Starting to receive messages..."

);

 // [ZH] 开始接收消息（回调方式）

 // [EN] Start receiving messages (callback method)

 subPub

 .StartReceiving(async message =>

 {

4.13 机器人订阅发布接口 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 273 / 284

 messageCount++;

 Console.WriteLine(

 $"\n=== 收到第{messageCount}条消息/Received Message #{messag

eCount} ==="

);

 foreach (var kv in message)

 {

 Console.WriteLine(

 $"{kv.Key}: {kv.Value}"

);

 }

 // [ZH] 接收指定数量消息后主动断开

 // [EN] Disconnect after receiving specified number of messages

 if (messageCount >= maxMessages)

 {

 Console.WriteLine(

 $"已接收{maxMessages}条消息，准备断开连接/Received {maxMe

ssages} messages, preparing to disconnect"

);

 subPub.Disconnect().Wait();

 Console.WriteLine(

 "WebSocket断开成功/WebSocket Disconnected Successfully"

);

 }

 await Task.CompletedTask;

 })

 .Wait();

 Console.WriteLine(

 "回调方式接收消息测试完成/Callback Receiving Test Completed"

);

 return StatusCode.OK;

 }

 catch (Exception ex)

 {

 Console.WriteLine(

 $"执行过程中发生异常/Exception occurred during execution: {ex.Messag

e}"

);

 return StatusCode.OtherReason;

4.13 机器人订阅发布接口 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 274 / 284

方法名 SubPub.Receive()

描述 接收下一条文本消息并返回

请求参数 无

返回值 Task<Dictionary<string, object>>：接收到的消息字典

兼容的机器人软件版本
协作 (Copper): v7.7.0.0+
工业 (Bronze): v7.7.0.0+

示例代码

4.13.7 接收下一条文本消息

SubPub/PollingReceiving.cs

 }

 finally

 {

 // [ZH] 关闭连接

 // [EN] Close the connection

 StatusCode disconnectCode =

 controller.Disconnect();

 if (disconnectCode != StatusCode.OK)

 {

 Console.WriteLine(

 disconnectCode.GetDescription()

);

 if (code == StatusCode.OK)

 code = disconnectCode;

 }

 }

 }

}

using Agilebot.IR;

using Agilebot.IR.SubPub;

cs

4.13 机器人订阅发布接口 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 275 / 284

using Agilebot.IR.Types;

public class PollingReceiving

{

 public static StatusCode Run(

 string controllerIP,

 bool useLocalProxy = true

)

 {

 // [ZH] 初始化捷勃特机器人

 // [EN] Initialize the Agilebot robot

 Arm controller = new Arm(

 controllerIP,

 useLocalProxy

);

 // [ZH] 连接捷勃特机器人

 // [EN] Connect to the Agilebot robot

 StatusCode code = controller.ConnectSync();

 Console.WriteLine(

 code != StatusCode.OK

 ? code.GetDescription()

 : "连接成功/Successfully connected."

);

 // [ZH] 初始化捷勃特机器人SubPub

 // [EN] Initialize the Agilebot robot SubPub

 var subPub = controller.SubPub;

 try

 {

 Console.WriteLine(

 "开始轮询方式接收消息测试/Starting Polling Receiving Test"

);

 // [ZH] 连接到WebSocket服务器

 // [EN] Connect to WebSocket server

 subPub.Connect().Wait();

 Console.WriteLine(

 "WebSocket连接成功/WebSocket Connected Successfully"

);

4.13 机器人订阅发布接口 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 276 / 284

 // [ZH] 订阅机器人状态

 // [EN] Subscribe to robot status

 var topicTypes = new RobotTopicType[]

 {

 RobotTopicType.TopicCurrentJoint,

 RobotTopicType.TopicRobotStatus,

 };

 subPub

 .SubscribeStatus(topicTypes, frequency: 100)

 .Wait();

 Console.WriteLine(

 "机器人状态订阅成功/Robot Status Subscription Successful"

);

 // [ZH] 订阅寄存器

 // [EN] Subscribe to registers

 var regIds = new int[] { 1, 2, 3 };

 subPub

 .SubscribeRegister(

 RegTopicType.R,

 regIds,

 frequency: 100

)

 .Wait();

 Console.WriteLine(

 "寄存器订阅成功/Register Subscription Successful"

);

 // [ZH] 订阅IO

 // [EN] Subscribe to IO

 var ioList = new (IOTopicType, int)[]

 {

 (IOTopicType.DI, 0),

 (IOTopicType.DO, 1),

 };

 subPub

 .SubscribeIO(ioList, frequency: 100)

 .Wait();

 Console.WriteLine(

 "IO订阅成功/IO Subscription Successful"

);

4.13 机器人订阅发布接口 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 277 / 284

 int messageCount = 0;

 int maxMessages = 10; // 接收10条消息后停止

 Console.WriteLine(

 "开始轮询接收消息/Starting to poll messages..."

);

 // [ZH] 循环接收消息直到达到期望数量

 // [EN] Loop to receive messages until reaching desired count

 do

 {

 messageCount++;

 try

 {

 // [ZH] 接收单条消息

 // [EN] Receive single message

 var message = subPub.Receive().Result;

 Console.WriteLine(

 $"\n=== 收到第{messageCount}条消息/Received Message #{messag

eCount} ==="

);

 foreach (var kv in message)

 {

 Console.WriteLine(

 $"{kv.Key}: {kv.Value}"

);

 }

 }

 catch (Exception ex)

 {

 Console.WriteLine(

 $"接收消息时发生异常/Exception while receiving message: {ex.

Message}"

);

 break;

 }

 } while (messageCount < maxMessages);

 // [ZH] 断开连接

 // [EN] Disconnect

 subPub.Disconnect().Wait();

 Console.WriteLine(

4.13 机器人订阅发布接口 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 278 / 284

 "WebSocket断开成功/WebSocket Disconnected Successfully"

);

 Console.WriteLine(

 "轮询方式接收消息测试完成/Polling Receiving Test Completed"

);

 return StatusCode.OK;

 }

 catch (Exception ex)

 {

 Console.WriteLine(

 $"执行过程中发生异常/Exception occurred during execution: {ex.Messag

e}"

);

 return StatusCode.OtherReason;

 }

 finally

 {

 // [ZH] 关闭连接

 // [EN] Close the connection

 StatusCode disconnectCode =

 controller.Disconnect();

 if (disconnectCode != StatusCode.OK)

 {

 Console.WriteLine(

 disconnectCode.GetDescription()

);

 if (code == StatusCode.OK)

 code = disconnectCode;

 }

 }

 }

}

4.13 机器人订阅发布接口 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 279 / 284

1. Arm 构造函数增加 teachPanelIP 参数

2. 去除 System.Text.Json 依赖

3. 增加同步连接接口 ConnectSync

1. 修复 PR 寄存器结构体中数据读写顺序错误

1. 修复 jogging 持续运动时卡顿的问题

2. 修复构建项目时可能会报 proxy 执行文件无法复制的问题

1. 修改底层请求模式，添加本地控制器代理服务

2. 添加订阅功能

3. 调整 BasScript 类结构

4. 全面支持 .NET Framework 和 .NET

1. 增加旧的寄存器接口类 RegistersOld 兼容 7.6.0.0 以前的机器人版本

捷勃特机器人 C# SDK 更新说明

2.0.3.* 更新（2025/12/17）

2.0.2.* 更新（2025/12/12）

2.0.1.* 更新（2025/10/21）

2.0.0.* 更新（2025/9/10）

1.0.1.0 更新（2025/7/7）

捷勃特机器人 C# SDK 更新说明 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 280 / 284

2. 增加 Estop 紧急制动接口

3. 修复文档中的示例程序

1. 改用 RPC 方式实现

2. 所有接口定义同步 Python 版本

1.0.0.0 更新（2025/5/30）

捷勃特机器人 C# SDK 更新说明 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 281 / 284

帮助

帮助 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 282 / 284

本文档介绍如何使用 AI 辅助工具（如 CodeBuddy、Codex、Cursor 等）快速开发机器人插件。

使用 AI 编程前，需要准备参考文档：

SDK 文档：https://dev.sh-agilebot.com/docs/sdk/knowledge/docs.txt

提示：如果您使用的 AI Agent 无法很好地读取 URL，建议将以上 txt 文档下载到本地项目目录
中，然后在 prompt 中引用本地文件路径。

以下是一个完整的示例，用于创建一个读取机器人状态的 Python 程序：

如果使用本地文档，可以修改为：

AI 编程支持

准备工作

示例 Prompt

使用技巧

阅读以下文档，写一个Python程序，用于读取机器人的当前位置、坐标系编号、伺服状态等信息。

参考资料：

SDK文档：https://dev.sh-agilebot.com/docs/sdk/knowledge/docs.txt

阅读以下文档，写一个Python程序，用于读取机器人的当前位置、坐标系编号、伺服状态等信息。

参考资料：

SDK文档：./docs/sdk_docs.txt

AI 编程支持 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 283 / 284

https://dev.sh-agilebot.com/docs/sdk/knowledge/docs.txt

1. 明确需求：清晰描述要实现的功能

2. 提供上下文：引用相关文档和示例

3. 分步实现：复杂功能可以分步骤让 AI 生成

1. AI 生成的代码需要经过验证和测试

2. 确保代码符合项目编码规范

3. 涉及机器人控制的代码必须进行安全审查

注意事项

AI 编程支持 | 捷勃特机器人 SDK

Copyright © 2026-present Agilebot Robotics Co., Ltd. 284 / 284

	Agilebot Robot SDK捷勃特机器人 SDK
	Python SDK
	C# SDK

	C# SDK ​
	序章 ​
	版本记录 ​
	机器人版本兼容性 ​
	1 简介与部署 ​
	1.1 环境要求 ​
	1.2 安装 ​
	IDE 安装与配置 ​
	SDK 获取与项目创建 ​
	代理服务与常见问题 ​
	联网要求与调试 ​

	1.3 示例程序使用方法 ​
	运行步骤 ​
	代理类型说明 ​

	2 名词解释 ​
	3 数据结构 ​
	3.1 StatusCode ​
	说明 ​
	导入 ​
	字段 ​

	3.2 RobotState ​
	说明 ​
	导入 ​
	字段 ​

	3.3 CtrlState ​
	说明 ​
	导入 ​
	字段 ​

	3.4 ServoState ​
	说明 ​
	导入 ​
	字段 ​

	3.5 TransformStatusEnum ​
	说明 ​
	导入 ​
	字段 ​

	3.6 PayloadInfo ​
	说明 ​
	导入 ​
	属性 ​
	示例 ​
	3.6.1 MassCenter ​
	说明 ​
	导入 ​
	属性 ​

	3.6.2 InertiaMoment ​
	说明 ​
	导入 ​
	属性 ​

	3.7 TransformState ​
	说明 ​
	导入 ​
	字段 ​

	3.8 TCSType ​
	说明 ​
	导入 ​
	字段 ​

	3.9 MotionPose ​
	说明 ​
	导入 ​
	属性 ​
	示例 ​

	3.10 BaseCartData ​
	说明 ​
	导入 ​
	属性 ​
	示例 ​
	3.10.1 Position ​
	说明 ​
	导入 ​
	属性 ​
	示例 ​

	3.10.2 Posture ​
	说明 ​
	导入 ​
	属性 ​
	示例 ​

	3.11 Joint ​
	说明 ​
	导入 ​
	属性 ​
	示例 ​
	注意事项 ​

	3.12 PoseType ​
	说明 ​
	导入 ​
	枚举值 ​

	3.13 DHparam ​
	说明 ​
	导入 ​
	属性 ​
	构造函数 ​
	注意事项 ​

	3.14 CartStatus ​
	说明 ​
	导入 ​
	属性 ​

	3.15 JointStatus ​
	说明 ​
	导入 ​
	属性 ​

	3.16 DragStatus ​
	说明 ​
	导入 ​
	属性 ​
	构造函数 ​
	示例 ​

	3.17 ProgramPose ​
	说明 ​
	导入 ​
	属性 ​
	构造函数 ​
	示例 ​
	3.17.1 ProgramPoseData ​
	说明 ​
	导入 ​
	属性 ​

	3.17.2 ProgramCartData ​
	说明 ​
	导入 ​
	属性 ​

	3.18 FileType ​
	说明 ​
	导入 ​
	枚举值 ​

	3.19 SignalType ​
	说明 ​
	导入 ​
	枚举值 ​

	3.20 PoseRegister ​
	说明 ​
	导入 ​
	属性 ​
	构造函数 ​
	示例 ​
	3.20.1 PoseRegisterData ​
	说明 ​
	导入 ​
	属性 ​

	3.22 Coordinate ​
	说明 ​
	导入 ​
	属性 ​
	示例 ​
	3.22.1 CoordinateType ​
	说明 ​
	导入 ​
	枚举值 ​

	3.22.2 CoordSummary ​
	说明 ​
	导入 ​
	属性 ​

	示例 ​

	4 方法与示例 ​
	4.1 机器人基础操作 ​
	4.1.1 连接机器人 ​
	4.1.2 判断与机械臂的连接是否有效 ​
	4.1.3 与机器人断开连接 ​
	4.1.4 获取当前机器人型号 ​
	4.1.5 获取机器人运行状态 ​
	4.1.6 获取当前控制器运行状态 ​
	4.1.7 获取当前伺服状态 ​
	4.1.8 获取机器人控制器版本 ​
	4.1.9 设置机器人的 LED 指示灯 ​
	4.1.10 机器人伺服启动 ​
	4.1.11 机器人伺服关闭 ​
	4.1.12 让机器人伺服重置 ​
	4.1.13 机器人紧急停止 ​

	4.2 机器人运动控制和状态 ​
	4.2.1 获取机器人参数 ​
	4.2.1.1 获取 OVC 全局速度比率 ​
	4.2.1.2 获取 OAC 全局加速度比率 ​
	4.2.1.3 获取当前使用的 TF ​
	4.2.1.4 获取当前使用的 UF ​
	4.2.1.5 获取当前使用的 TCS 示教坐标系 ​

	4.2.2 设置机器人参数 ​
	4.2.2.1 设置 OVC 全局速度比率 ​
	4.2.2.2 设置 OAC 全局加速度比率 ​
	4.2.2.3 设置当前使用的 TF 用户坐标系编号 ​
	4.2.2.4 设置当前使用的 UF 工具坐标系编号 ​
	4.2.2.5 设置当前使用的 TCS 示教坐标系 ​

	4.2.3 将笛卡尔点位转换成关节值点位 ​
	4.2.4 将关节值点位转换成笛卡尔点位 ​
	4.2.5 机器人末端移动到指定的位置 ​
	4.2.6 让机器人末端沿直线移动到指定的位置 ​
	4.2.7 机器人末端沿弧线移动到指定的位置 ​
	4.2.8 获取机器人的当前位姿 ​
	4.2.9 获取机器人的 DH 参数 ​
	4.2.10 设置机器人的 DH 参数 ​
	4.2.11 获取机器人轴锁定状态 ​
	4.2.12 设定机器人轴锁定状态 ​
	4.2.13 设定当前机器人是否启动拖动示教 ​
	4.2.14 进入实时位置控制模式 ​
	4.2.15 退出实时位置控制模式 ​
	4.2.16 设置订阅参数 ​
	推送数据说明 ​

	4.2.17 获取机器人软限位 ​
	4.2.18 指定 UDP 位置控制的相关参数 ​
	4.2.19 负载相关接口 ​
	4.2.19.1 获取当前激活的负载 ​
	4.2.19.2 获取对应的负载 ​
	4.2.19.3 激活对应的负载 ​
	4.2.19.4 获取所有负载信息 ​
	4.2.19.5 添加负载 ​
	4.2.19.6 删除指定负载 ​
	4.2.19.7 更新指定负载 ​
	4.2.19.8 检测 3 轴是否水平 ​
	4.2.19.9 获取负载测定状态 ​
	4.2.19.10 开始负载测定 ​
	4.2.19.11 获取负载测定结果 ​
	4.2.19.12 开始干涉检查 ​
	4.2.19.13 进入负载测定状态 ​
	4.2.19.14 结束负载测定状态 ​
	4.2.19.15 负载测定全流程 ​

	4.3 机器人操作类 ​
	4.3.1 执行指定的程序 ​
	4.3.2 停止正在执行的程序 ​
	4.3.3 返回所有正在运行的程序详细信息 ​
	4.3.4 暂停程序运行 ​
	4.3.5 恢复程序运行 ​
	4.3.6 执行 BAS 脚本程序 ​

	4.4 程序信息读写 ​
	4.4.1 获取指定程序中指定位姿点值 ​
	4.4.2 修改指定程序中指定位姿点值 ​
	4.4.3 添加指定程序位姿点 ​
	4.4.4 删除指定程序中指定序号的位姿点 ​
	4.4.5 获取指定程序中所有的位姿点 ​
	4.4.6 机器人程序位姿点类型转换 ​

	4.5 IO 信号 ​
	4.5.1 读取指定类型指定端口 IO 的值 ​
	4.5.2 写指定类型指定端口 IO 的值 ​
	4.5.3 批量写入 DO 信号 ​
	4.5.4 批量读取 DO 信号 ​

	4.6 寄存器信息 ​
	4.6.1 R 数值寄存器相关操作 ​
	4.6.1.1 获取一个 R 寄存器的值 ​
	4.6.1.2 写入一个 R 寄存器的值 ​
	4.6.1.3 删除一个 R 寄存器 ​

	4.6.2 MR 运动寄存器相关操作 ​
	4.6.2.1 获取一个 MR 寄存器的值 ​
	4.6.2.2 写入一个 MR 寄存器的值 ​
	4.6.2.3 删除一个 MR 寄存器 ​

	4.6.3 SR 字符串寄存器相关操作 ​
	4.6.3.1 获取一个 SR 寄存器的值 ​
	4.6.3.2 写入一个 SR 寄存器的值 ​
	4.6.3.3 删除一个 SR 寄存器 ​

	4.6.4 PR 位姿寄存器相关操作 ​
	4.6.4.1 获取一个 PR 寄存器的值 ​
	4.6.4.2 写入一个 PR 寄存器的值 ​
	4.6.4.3 删除一个 PR 寄存器 ​

	4.6.5 Modbus 寄存器（MH 保持寄存器、MI 输入寄存器） ​
	4.6.5.1 获取一个 MH 寄存器的值 ​
	4.6.5.2 获取一个 MI 寄存器的值 ​
	4.6.5.3 写入一个 MH 寄存器的值 ​
	4.6.5.4 写入一个 MI 寄存器的值 ​

	4.7 轨迹控制 ​
	4.7.1 设置待执行的离线轨迹文件 ​
	4.7.2 机器人移动到离线轨迹中的起始点 ​
	4.7.3 机器人开始执行离线轨迹文件 ​
	4.7.4 将 CSV 轨迹文件转换为 Trajectory 格式 ​
	4.7.5 查询轨迹转换状态 ​

	4.8 报警信息 ​
	4.8.1 获取最严重的一条报警 ​
	4.8.2 获取所有的活动的报警 ​
	4.8.3 复位错误 ​

	4.9 文件服务类 ​
	4.9.1 上传本地文件到机器人 ​
	4.9.2 下载机器人文件到本地 ​
	4.9.3 删除机器人上的文件 ​
	4.9.4 按文件名模式搜索文件 ​

	4.10 BasScript 脚本程序类 ​
	4.10.1 MoveJoint 运动到点指令 ​
	4.10.2 MoveLine 直线运动到点指令 ​
	4.10.3 MoveCircle 弧线运动到点指令 ​
	4.10.4 Jump 点对点移动指令 ​
	4.10.5 Jump3 三点跳跃指令 ​
	4.10.6 Jump3CP 三点跳跃 CP 指令 ​
	4.10.7 ExtraParam 额外参数类 ​
	4.10.8 AssignValue 赋值指令 ​
	4.10.9 AssignValue 赋值指令 ​
	4.10.10 IF 条件指令 ​
	4.10.11 ELSE_IF 条件分支指令 ​
	4.10.12 ELSE 否则指令 ​
	4.10.13 END_IF 结束条件指令 ​
	4.10.14 WHILE 循环指令 ​
	4.10.15 END_WHILE 结束循环指令 ​
	4.10.16 SWITCH 多分支选择指令 ​
	4.10.17 CASE 分支指令 ​
	4.10.18 DEFAULT 默认分支指令 ​
	4.10.19 END_SWITCH 结束多分支选择指令 ​
	4.10.20 SKIP_CONDITION 跳过条件指令 ​
	4.10.21 WAIT 等待条件指令 ​
	4.10.22 WAIT_TIME 等待时间指令 ​
	4.10.23 GOTO 跳转指令 ​
	4.10.24 LABEL 标签指令 ​
	4.10.25 BREAK 跳出循环指令 ​
	4.10.26 CONTINUE 跳过循环指令 ​
	4.10.27 PAUSE 暂停指令 ​
	4.10.28 ABORT 中断指令 ​
	4.10.29 CALL 同步调用程序指令 ​
	4.10.30 RUN 异步调用程序指令 ​
	4.10.31 LOAD 加载程序指令 ​
	4.10.32 UNLOAD 卸载程序指令 ​
	4.10.33 EXEC 执行程序指令 ​
	4.10.34 OPEN 打开 socket 连接指令 ​
	4.10.35 CLOSE 关闭 socket 连接指令 ​
	4.10.36 CONNECT 连接 socket 指令 ​
	4.10.37 SEND 发送 socket 数据指令 ​
	4.10.38 RECV 接收 socket 数据指令 ​
	4.10.39 READ_MH 读取 Modbus 保持寄存器指令 ​
	4.10.40 READ_MI 读取 Modbus 输入寄存器指令 ​
	4.10.41 WRITE_MH 写入 Modbus 保持寄存器指令 ​
	4.10.42 FIND 寻找视觉程序指令 ​
	4.10.43 GET_OFFSET 获取视觉程序偏移量指令 ​
	4.10.44 GET_QUANTITY 获取视觉程序结果指令 ​
	4.10.45 SetParam 设置参数指令 ​

	4.11 坐标系类 ​
	4.11.1 获取指定坐标系信息 ​
	4.11.2 更新坐标系信息 ​
	4.11.3 添加坐标系信息 ​
	4.11.4 删除指定坐标系信息 ​
	4.11.5 获取坐标系信息列表 ​

	4.12 机器人示教运动 ​
	4.12.1 机器人 Jogging 运动 ​
	4.12.2 机器人多轴同时连续运动 ​
	4.12.3 停止机器人 Jogging 运动 ​

	4.13 机器人订阅发布接口 ​
	4.13.1 连接到 WebSocket 服务器 ​
	4.13.2 断开 WebSocket 服务器 ​
	4.13.3 添加机器人状态订阅 ​
	4.13.4 添加寄存器订阅 ​
	4.13.5 添加 IO 订阅 ​
	4.13.6 开始接收消息 ​
	4.13.7 接收下一条文本消息 ​

	捷勃特机器人 C# SDK 更新说明 ​
	2.0.3.* 更新（2025/12/17） ​
	2.0.2.* 更新（2025/12/12） ​
	2.0.1.* 更新（2025/10/21） ​
	2.0.0.* 更新（2025/9/10） ​
	1.0.1.0 更新（2025/7/7） ​
	1.0.0.0 更新（2025/5/30） ​

	帮助 ​
	AI 编程支持 ​
	准备工作 ​
	示例 Prompt ​
	使用技巧 ​
	注意事项 ​

